Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T14:10:10.823Z Has data issue: false hasContentIssue false

Marine geological investigation of Edward VIII Gulf, Kemp Coast, East Antarctica

Published online by Cambridge University Press:  04 March 2020

Isabel A. Dove*
Affiliation:
Department of Geology, Colgate University, Hamilton, NY13346, USA
Amy Leventer
Affiliation:
Department of Geology, Colgate University, Hamilton, NY13346, USA
Meredith J. Metcalf
Affiliation:
Department of Environmental Earth Science, Eastern Connecticut State University, Willimantic, CT06226, USA
Stefanie A. Brachfeld
Affiliation:
Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ07043, USA
Robert B. Dunbar
Affiliation:
Department of Earth System Science, Stanford University, Stanford, CA94305, USA
Patricia Manley
Affiliation:
Department of Geology, Middlebury College, Middlebury, VT05753, USA
Amelia E. Shevenell
Affiliation:
College of Marine Sciences, University of South Florida, St Petersburg, FL33701, USA
Richard W. Murray
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, MA02543, USA
Matthew Hommeyer
Affiliation:
College of Marine Sciences, University of South Florida, St Petersburg, FL33701, USA
Kelly A. Kryc
Affiliation:
Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA02110, USA
Natalie McLenaghan
Affiliation:
National Oceanic and Atmospheric Administration, Silver Springs, MD20910, USA
Fiona Taylor
Affiliation:
College of Sciences and Engineering, University of Tasmania, Hobart, TAS7001, Australia
Bruce A. Huber
Affiliation:
Lamont–Doherty Earth Observatory, Palisades, NY10964, USA

Abstract

A physical oceanographic, geophysical and marine geological survey of Edward VIII Gulf, Kemp Coast, collected data from conductivity–temperature–depth casts, multi-beam bathymetric swath mapping and 3.5 kHz sub-bottom surveying. Modified circumpolar deep water (mCDW) is observed in Edward VIII Gulf, as well as notable bathymetric features including mega-scale glacial lineations and a 1750 m-deep trough. Sedimentological, geochemical, rock-magnetic and micropalaeontological analysis of two kasten cores document regional palaeoclimate and palaeo-oceanographic conditions over the past 8000 years, with a warm period occurring from c. 8 to 4 ka and a shift to cooler conditions beginning at c. 4 ka and persisting until at least 0.9 ka. Sediment packages > 40 m thick within deep troughs in Edward VIII Gulf present potential targets for higher-resolution Holocene and deglacial climate studies. Despite the presence of mCDW on the shelf, inland bed topography consisting of highland terrain suggests the likelihood of relative stability of this sector of the East Antarctic Ice Sheet.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armand, L.K., Crosta, X., Romero, O. & Pichon, J.J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 1. sea ice related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 93126.CrossRefGoogle Scholar
Arndt, J.E., Schenke, H.W., Jakobsson, M., Nitsche, F., Buys, G., Goleby, B., et al. 2013. The International Bathymetric Chart of the Southern Ocean (IBCSO) version 1.0 - a new bathymetric compilation covering circum-Antarctic waters. Geophysical Research Letters, 40, 31113117.CrossRefGoogle Scholar
Berg, S., Wagner, B., Cremer, H., Leng, M.J. & Melles, M. 2010. Late Quaternary environmental and climate history of Rauer Group, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 201213.CrossRefGoogle Scholar
Blaauw, M. & Christen, J. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457474.Google Scholar
Borchers, A., Dietze, E., Kuhn, G., Esper, O., Voigt, I., Hartmann, K. & Diekmann, B. 2016. Holocene ice dynamics and bottom-water formation associated with Cape Darnley polynya activity recorded in Burton Basin, East Antarctica. Marine Geophysical Research, 37, 4970.CrossRefGoogle Scholar
Brachfeld, S.A. 2006. High-field magnetic susceptibility (χHF) as a proxy of biogenic sedimentation along the Antarctic Peninsula. Physics of the Earth and Planetary Interiors, 156, 274282.CrossRefGoogle Scholar
Brachfeld, S.A., Banerjee, S.K., Guyodo, Y. & Acton, G.D. 2002. A 13,200 year history of century to millennial scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters, 194, 311326.CrossRefGoogle Scholar
Cameron, R.L. 1963. Glaciological studies at Wilkes Station, Budd Coast, Antarctica. Doctoral dissertation, Ohio State University, 222 pp. [Unpublished].Google Scholar
Crosta, X., Debret, M., Denis, D., Courty, M.A. & Ther, O. 2007. Holocene long- and short-term climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems, 8, 10.1029/2007GC001718.CrossRefGoogle Scholar
Damm, V. 2007. A subglacial topographic model of the southern drainage area of the Lambert Glacier/Amery Ice Shelf system - results of an airborne ice thickness survey south of the Prince Charles Mountains. Terra Antarctica, 14, 8594.Google Scholar
DeConto, R.M. & Pollard, D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597.CrossRefGoogle ScholarPubMed
Denis, D., Crosta, X., Schmidt, S., Carson, D.S., Ganeshram, R.S., Renssen, H., et al. 2009. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica. Quaternary Science Reviews, 28, 12911303.CrossRefGoogle Scholar
Fernandez, R., Gulick, S., Domack, E., Montelli, A., Leventer, A., Shevenell, A., et al. 2018. Past ice stream and ice sheet changes on the continental shelf off the Sabrina Coast, East Antarctica. Geomorphology, 317, 1022.CrossRefGoogle Scholar
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N. E., Bell, R., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375393.CrossRefGoogle Scholar
Guitard, M.E., Shevenell, A.E., Lavoie, C. & Domack, E.W. 2016. Mega-scale glacial lineations and grounding-zone wedges in Prydz Channel, East Antarctica. Geological Society, London, Memoirs, 46, 185186.CrossRefGoogle Scholar
Harris, P.T. 2000. Ripple cross-laminated sediments on the East Antarctic Shelf: evidence for episodic bottom water production during the Holocene? Marine Geology, 170, 317330.CrossRefGoogle Scholar
Hodgson, D.A., Whitehouse, P.L., DeCort, G., Berg, S., Verleyen, E., Tavernier, I., et al. 2016. Rapid early Holocene sea-level rise in Prydz Bay, East Antarctica. Global and Planetary Change, 139, 128140.CrossRefGoogle Scholar
Howat, I.M., Porter, C., Smith, B.E., Noh, M.-J. & Morin, P. 2019. The reference elevation model of Antarctica. Cryosphere, 13, 665674.CrossRefGoogle Scholar
Igarashi, A., Harada, N. & Moriwaki, K. 1995. Marine fossils of 30–40ka in raised beach deposits, and late Pleistocene glacial history around Lützow-Holm Bay, East Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences, 8, 219229.Google Scholar
Igarashi, A., Numanami, H., Tsuchiya, Y. & Fukuchi, M. 2001. Bathymetric distribution of fossil foraminifera within marine sediment cores from the eastern part of Lützow-Holm Bay, East Antarctica, and its paleoceanographic implications. Marine Micropaleontology, 42, 125162.CrossRefGoogle Scholar
Jenkins, A., Dutrieux, P., Jacobs, S.S., McPhail, S.D., Perrett, J.R., Webb, A.T. & White, D. 2010. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geoscience, 3, 468472.CrossRefGoogle Scholar
Joughin, I., Smith, B.E. & Medley, B. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier basin, West Antarctica. Science, 344, 735738.CrossRefGoogle ScholarPubMed
Leventer, A. 1991. Sediment trap diatom assemblages from the northern Antarctic Peninsula region. Deep-Sea Research Part A. Oceanographic Research Papers, 38, 11271143.CrossRefGoogle Scholar
Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E., et al. 2006. Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today, 16, 10.1130/GSAT01612A.1.CrossRefGoogle Scholar
Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., et al. 2011. Retreat of the East Antarctic Ice Sheet during the last glacial termination. Nature Geoscience, 4, 195202.CrossRefGoogle Scholar
Mackintosh, A., Verleyen, E., O’Brien, P., White, D., Selwyn Jones, R., McKay, R., et al. 2014. Retreat history of the East Antarctic Ice Sheet since the last glacial maximum. Quaternary Science Reviews, 100, 1030.CrossRefGoogle Scholar
Masson, V., Vimeaux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., et al. 2000. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54, 348358.CrossRefGoogle Scholar
McMullen, K., Domack, E.W., Leventer, A., Lavoie, C. & Canals, M. 2016. Grounding-zone wedges and mega-scale glacial lineations in the Mertz Trough, East Antarctica. Geological Society, London, Memoirs, 46, 241242.CrossRefGoogle Scholar
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., et al. 2019. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nature Geoscience, 10.1038/s41561-019-0510-8.Google Scholar
Mortlock, R.A. & Froelich, P.N. 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research Part A. Oceanographic Research Papers, 36, 14151426.CrossRefGoogle Scholar
Murray, R.W. & Leinen, M. 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60, 38693878.CrossRefGoogle Scholar
Nitsche, F., Porter, D., Williams, G., Cougnon, E., Fraser, A., Correia, R. & Guerrero, R. 2017. Bathymetric control of warm water ocean water access along the East Antarctic margin. Geophysical Research Letters, 44, 89368944.CrossRefGoogle Scholar
O’Brien, P.E., Beaman, R., De Santis, L., Domack, E.W., Escutia, C., Harris, P.T., et al. 2016. Submarine glacial landforms on the cold East Antarctic margin. Geological Society, London, Memoirs, 46, 501508.CrossRefGoogle Scholar
Orsi, A.H., Whitworth III, T. & Nowlin, W.D. Jr 1995. On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Research I, 42, 641673.CrossRefGoogle Scholar
Panizzo, V., Crespin, J., Crosta, X., Shemesh, A., Massé, G., Yam, R., et al. 2014. Sea ice diatom contributions to Holocene nutrient utilization in East Antarctica. Paleoceanography and Paleoclimatology, 29, 328343.CrossRefGoogle Scholar
Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R. & Padman, L. 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.CrossRefGoogle ScholarPubMed
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.J. & Morlighem, M. 2019. Four decades of Antarctic ice sheet mass balance from 1979–2017. Proceedings of the National Academy of Sciences of the United States of America, 116, 10951103.CrossRefGoogle ScholarPubMed
Rintoul, S.R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M., Greenbaum, J.S. & Blankenship, D.D. 2016. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances, 2, 10.1126/sciadv.1601610.CrossRefGoogle ScholarPubMed
Scherer, R. 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12, 171179.CrossRefGoogle Scholar
Schroeder, J.O., Murray, R.W., Leinen, M., Pflaum, R.C. & Janecek, T.R. 1997. Barium in equatorial Pacific carbonate sediment: terrigenous, oxide, and biogenic associations. Paleoceanography, 12, 125146.CrossRefGoogle Scholar
Sheraton, J.W, Tingey, R.J., Black, L.P., Offe, L.A. & Ellis, D.J. 1987. Geology of Enderby Land and western Kemp Land, Antarctica. Bureau of Mineral Resources, Geology and Geophysics, Australia, No. 223, 151.Google Scholar
Stickley, C.E., Pike, J., Leventer, A., Dunbar, R., Domack, E.W., Brachfeld, S., et al. 2005. Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeocology, 227, 290310.CrossRefGoogle Scholar
Taylor, F. & McMinn, A. 2001. Evidence from diatoms for Holocene climate fluctuation along the East Antarctic margin. Holocene, 11, 455466.CrossRefGoogle Scholar
Toyoshima, T., Osanai, Y. & Nogi, Y. 2008. Macroscopic geological structures of the Napier and Rayner complexes, East Antarctica. Special Publication of the Geological Society of London, No. 308, 139146.CrossRefGoogle Scholar
Trail, D.S. 1970. ANARE 1961 geological traverses on the Mac. Robertson Land and Kemp Land coast, Vol. 135. Canberra: Bureau of Mineral Resources, Geology and Geophysics.Google Scholar
Verleyen, E., Hodgson, D.A., Milne, G.A., Sabbe, K. & Vyverman, W. 2005. Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quaternary Research, 63, 4552.CrossRefGoogle Scholar
Verleyen, E., Tavernier, I., Hodgson, D.A., Whitehouse, P.L., Kudoh, S., Imura, S., et al. 2017. Ice sheet retreat and glacio-isostatic adjustment in Lützow-Holm Bay, East Antarctica. Quaternary Science Reviews, 169, 8598.CrossRefGoogle Scholar
Wellner, J.S., Heroy, D.C. & Anderson, J.B. 2006. The death mask of the Antarctic ice sheet: comparison of glacial geomorphic features across the continental shelf. Geomorphology, 75, 157171.CrossRefGoogle Scholar
White, D.A., Fink, D. & Gore, D.B. 2011. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology, 39, 2326.CrossRefGoogle Scholar
Williams, G.D., Herriaz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, I.I., Fukamachi, Y., et al. 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nature Communications, 7, 10.1038/ncomms12577.CrossRefGoogle ScholarPubMed
Wright, A.P., Young, D.A., Roberts, J.L., Schroeder, D.M., Bamber, J.L., Dowdeswell, J.A., et al. 2012. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. Journal of Geophysical Research: Earth Surface, 117, 10.1029/2011JF002066.CrossRefGoogle Scholar
Yamane, M., Yokoyama, Y., Miura, H., Maemoku, H., Iwasaki, S. & Matsuzaki, H. 2011. The last deglacial history of Lützow-Holm Bay, East Antarctica. Journal of Quaternary Science, 26, 36.CrossRefGoogle Scholar
Young, D.A., Wright, A.P., Roberts, J.L., Warner, R.C., Young, N.W., Greenbaum, J.S., et al. 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature, 474, 7275.CrossRefGoogle ScholarPubMed