Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:33:52.224Z Has data issue: false hasContentIssue false

Mineralogy of glaciomarine sediments from the Prydz Bay–Kerguelen region: relation to modern depositional environments

Published online by Cambridge University Press:  16 November 2010

Andreas Borchers*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam Telegrafenberg A43, 14473 Potsdam, Germany
Ines Voigt
Affiliation:
University of Bremen, Geosciences Postbox 330440, 28334 Bremen, Germany
Gerhard Kuhn
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Bremerhaven Columbusstrasse, 27568 Bremerhaven, Germany
Bernhard Diekmann
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam Telegrafenberg A43, 14473 Potsdam, Germany

Abstract

Surface mineralogical compositions and their association to modern processes are well known from the east Atlantic and south-west Indian sectors of the Southern Ocean, but data from the interface of these areas - the Prydz Bay–Kerguelen region - is still missing. The objective of our study was to provide mineralogical data of reference samples from this region and to relate these mineralogical assemblages to hinterland geology, weathering, transport and depositional processes. Clay mineral assemblages were analysed by means of X-ray diffraction technique. Heavy mineral assemblages were determined by counting of gravity-separated grains under a polarizing microscope. Results show that by use of clay mineral assemblages four mineralogical provinces can be subdivided: i) continental shelf, ii) continental slope, iii) deep sea, iv) Kerguelen Plateau. Heavy mineral assemblages in the fine sand fraction are relatively uniform except for samples taken from the East Antarctic shelf. Our findings show that mineralogical studies on sediment cores from the study area have the potential to provide insights into past shifts in ice-supported transport and activity and provenance of different water masses (e.g. Antarctic slope current and deep western boundary current) in the Prydz Bay–Kerguelen region.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bindoff, N.L., Rosenberg, M.A. Warner, M.J. 2000. On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E. Deep-Sea Research II, 47, 22992326.Google Scholar
Biscaye, P.E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Cooper, A.K. O’Brien, P.E. 2004. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In Cooper, A.K., O’Brien, P.E. & Shipboard Scientific Party., Prydz Bay–Cooperation Sea, Antarctica: glacial history and palaeoceanography Sites 1165–1167. Proceedings of the Ocean Drilling Program, Scientific Results, 188, 1–42.Google Scholar
Cooper, A.K., Barrett, P.J., Hinz, K., Traube, V., Leitchenkov, G. Stagg, H.M.J. 1991. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events. Marine Geology, 102, 175213.CrossRefGoogle Scholar
Damiani, D., Giorgetti, G. Turbanti, I.M. 2006. Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene–Quaternary marine sediments from Wilkes Land continental rise (East Antarctica): palaeoenvironmental significance. Marine Geology, 226, 281295.CrossRefGoogle Scholar
Diekmann, B. Kuhn, G. 1999. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica: ice-rafting versus current transport. Marine Geology, 158, 209231.Google Scholar
Diekmann, B., Fütterer, D.K., Grobe, H., Hillenbrand, C.D., Kuhn, G., Petschick, R. Pirrung, M. 2003. Terrigenous sediment supply in the polar to temperate South Atlantic: land-ocean links of environmental changes during the late Quaternary. In Wefer, G., Mulitza, S. & Ratmeyer, V., eds. The South Atlantic in the late Quaternary: reconstruction of material budget and current systems. Berlin: Springer, 375399.Google Scholar
Domack, E., O’Brien, P., Harris, P., Taylor, F., Quilty, P.G., de Santis, L. Raker, B. 1998. Late Quaternary sediment facies in Prydz Bay, East Antarctica, and their relationship to glacial advance onto the continental shelf. Antarctic Science, 10, 236246.CrossRefGoogle Scholar
Donohue, K.A., Hufford, G.E. McCartney, M.S. 1999. Sources and transport of the deep western boundary current east of the Kerguelen Plateau. Geophysical Research Letters, 26, 851854.CrossRefGoogle Scholar
Ehrmann, W., Grobe, H. Fütterer, D.K. 1991. Late Miocene to Holocene glacial history of East Antarctica revealed by sediments from Sites 745 and 746. In Barron, J., Larsen, B & Shipboard Scientific Party. Kerguelen Plateau-Prydz Bay. Proceedings of the Ocean Drilling Program, Scientific Results, 119, 239–289.Google Scholar
Ehrmann, W., Melles, M., Kuhn, G. Grobe, H. 1992. Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology, 107, 249273.Google Scholar
Ehrmann, W., Bloemendal, J., Hambrey, M.J., McKelvey, B. Whitehead, J. 2003. Variations in the composition of the clay fraction of the Cenozoic Pagodroma Group, East Antarctica: implications for determining provenance. Sedimentary Geology, 161, 131152.Google Scholar
Esquevin, J. 1969. Influence de la composition chimique des illites sur le cristallinité. Bulletin du Centre de Recherches de Pau, Société Nationale des Pétroles d’Aquitaine, 3, 147154.Google Scholar
Federov, L.V., Grikurov, G.E., Kurinin, R.G. Masolov, V.N. 1982. Crustal structure of the Lambert Glacier area from geophysical data. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 931936.Google Scholar
Fricker, H.A., Warner, R.C. Allison, I. 2000. Mass balance of the Lambert Glacier–Amery Ice Shelf system, East Antarctica: a comparison of computed balance fluxes and measured fluxes. Journal of Glaciology, 46, 561570.Google Scholar
Gale, S.J. Hoare, P.G. 1991. Quaternary sediments: petrographic methods for the study of unlithified rocks. New York: Halsted Press, 323 pp.Google Scholar
Goodell, H.G. 1973. The sediments. In Goodell, H.G., Houtz, R., Ewing, M., Hayes, D., Naini, B., Echols, R.J., Kennett, J.P. & Donahue, J.G., eds. Marine sediments of the Southern Ocean. Antarctic Map Folio Series, 17, 1–9.Google Scholar
Grobe, H. Mackensen, A. 1992. Late Quaternary climatic cycles as recorded in sediments from the Antarctic continental margin. The Antarctic paleoenvironment: a perspective on global change. Antarctic Research Series, 56, 349376.Google Scholar
Hambrey, M.J. McKelvey, B. 2000. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica. Sedimentology, 47, 577607.CrossRefGoogle Scholar
Harris, P.T. O’Brien, P.E. 1998. Bottom currents, sedimentation and ice sheet retreat facies successions on the Mac. Robertson shelf, East Antarctica. Marine Geology, 151, 4772.Google Scholar
Harris, P., O’Brien, P.E., Quilty, P.G., Taylor, F., Domack, E., de Santis, L. Raker, B. 1997. Post Cruise Report, Antarctic CRC Marine Geoscience: Vincennes Bay, Prydz Bay and Mac. Robertson Shelf: AGSO Cruise 186, ANARE Voyage 5, 1996/97 (BRAD). AGSO Record 1997/51, 1–75.Google Scholar
Hultzsch, N., Wagner, B., Diekmann, B. White, D. 2008. Mineralogical implications for the late Pleistocene glaciation in Amery Oasis, East Antarctica, from a lake sediment core. Antarctic Science, 20, 169172.CrossRefGoogle Scholar
Junttila, J., Ruikka, M. Strand, K. 2005. Clay mineral assemblages in high-resolution Plio–Pleistocene interval at ODP Site 1165, Prydz Bay, Antarctica. Global and Planetary Change, 45, 151163.CrossRefGoogle Scholar
Kemp, E.M. 1972. Reworked palynomorphs from west ice shelf area, East Antarctica, and their possible geological and palaeoclimatological significance. Marine Geology, 13, 145157.Google Scholar
Kuvaas, B. Leitchenkov, G. 1992. Glaciomarine turbidite and current controlled deposits in Prydz Bay, Antarctica. Marine Geology, 108, 365381.CrossRefGoogle Scholar
McCartney, M.S. Donohue, K.A. 2007. A deep cyclonic gyre in the Australian-Antarctic Basin. Progress in Oceanography, 75, 675750.CrossRefGoogle Scholar
Moriarty, K.C. 1977. Clay minerals in south-east Indian Ocean sediments, transport mechanisms and depositional environments. Marine Geology, 25, 149174.CrossRefGoogle Scholar
Müller, G. 1967. Methods in sedimentary petrography, part 1. New York: Hafner Publishing Co, 283 pp.Google Scholar
O’Brien, P.E. 1994. Morphology and late glacial history of Prydz Bay, Antarctica, based on echo sounder data. Terra Antarctica, 1, 403405.Google Scholar
Orsi, A.H., Whitworth, T. III Nowlin, W.D. Jr 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641673.Google Scholar
Park, Y.H., Vivier, F., Roquet, F. Kestenare, E. 2009. Direct observations of the ACC transport across the Kerguelen Plateau. Geophysical Research Letters, 10.1029/2009GL039617.CrossRefGoogle Scholar
Parra, M., Chapuy, B., Pons, J.C. Latouche, C. 1991. The nature and origin of smectites in the Kerguelen–Heard archipelagos of the southern Indian Ocean. Continental Shelf Research, 11, 347364.CrossRefGoogle Scholar
Petschick, R., Kuhn, G. Gingele, F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203229.CrossRefGoogle Scholar
Quilty, P.G., Truswell, E.M., O’Brien, P.E. Taylor, F. 1999. Paleocene–Eocene biostratigraphy and palaeoenvironment of East Antarctica: new data from the Mac. Robertson shelf and western parts of Prydz Bay. AGSO Journal of Australian Geology and Geophysics, 17, 133143.Google Scholar
Roquet, F., Park, Y.H., Guinet, C., Bailleul, F. Charrassin, J.B. 2009. Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals. Journal of Marine Systems, 78, 377393.Google Scholar
Schmitt, C., Kottmeier, C., Wassermann, S. Drinkwater, M. 2004. Atlas of Antarctic sea ice drift, Karlsruhe. http://imkbemu.physik.uni-karlsruhe.de/~eisatlas/.Google Scholar
Smith, N.R., Dong, Z.Q., Kerry, K.R. Wright, S. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep-Sea Research I, 31, 11211147.Google Scholar
Stagg, H.M.J. 1985. The structure and origin of Prydz Bay and Mac. Robertson Shelf, East Antarctica. Tectonophysics, 114, 315340.Google Scholar
Stone, J., Bird, M.I., Zwartz, D., Lambeck, K., Fifield, L.K. Allan, G.L. 1993. Deglaciation and sea-level in Vestfold Hills, East Antarctica. EOS Transactions, 74, 243.Google Scholar
Tamura, T., Ohshima, K.I. Nihashi, S. 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 10.1029/2007GL032903.Google Scholar
Thost, D.E., Leitchenkov, G., O’Brien, P.E., Tingey, R.J., Wellman, P. Golynsky, A.V. 1998. Geology of the Lambert Glacier-Prydz Bay region, East Antarctica. 1:1 000 000. Canberra: Australian Geological Survey Organisation.Google Scholar
Tingey, R.J. 1991. The geology of Antarctica. Oxford: Clarendon Press, 680 pp.Google Scholar
Truswell, E.M., Dettmann, M.E. O’Brien, P.E. 1999. Mesozoic palynofloras from the Mac. Robertson shelf, East Antarctica: geological and phytogeographic implications. Antarctic Science, 11, 239255.Google Scholar
Turner, B.R. 1991. Depositional environment and petrography of preglacial continental sediments from Hole 740A, Prydz Bay, Antarctica. In Barron, J., Larsen, B. & Shipboard Scientific Party. Kerguelen Plateau-Prydz Bay. Proceedings of the Ocean Drilling Program, Scientific Results, 119, 45–56.Google Scholar
Vaz, N.R.A. Lennon, G.W. 1996. Physical oceanography of the Prydz Bay region of Antarctic waters. Deep-Sea Research I, 43, 603641.Google Scholar
Von der Borch, C.C. Oliver, R.L. 1967. Comparison of heavy minerals in marine sediments with mainland rock outcrops along the coast of Antarctica between longitudes 40°E and 150°E. Sedimentary Geology, 2, 7780.CrossRefGoogle Scholar
Webb, J.A. Fielding, C.R. 1993. Revised stratigraphical nomenclature for the Permo–Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East Antarctica. Antarctic Science, 5, 409410.CrossRefGoogle Scholar
Whitehead, J.M., Quilty, P.G., McKelvey, B.C. O’Brien, P.E. 2006. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben-Prydz Bay region, East Antarctica. Antarctic Science, 18, 8399.Google Scholar
Yabuki, T., Suga, T., Hanawa, K., Matsuoka, K., Kiwada, H. Watanabe, T. 2006. Possible source of the Antarctic bottom water in the Prydz Bay region. Journal of Oceanography, 62, 649655.CrossRefGoogle Scholar