Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T19:20:01.118Z Has data issue: false hasContentIssue false

New records and updated distributional patterns of macroalgae from the South Shetland Islands and northern Weddell Sea, Antarctica

Published online by Cambridge University Press:  04 August 2023

Franciane Pellizzari*
Affiliation:
Phycology and Marine Water Quality Laboratory, Biological Sciences Department, Paraná State University (UNESPAR/campus Paranaguá), Comendador Correa Junior 117, 82203-280, Paranaguá, Paraná, Brazil
João Pedro Dos Santos De Mello
Affiliation:
Phycology and Marine Water Quality Laboratory, Biological Sciences Department, Paraná State University (UNESPAR/campus Paranaguá), Comendador Correa Junior 117, 82203-280, Paranaguá, Paraná, Brazil
Michelle C. Santos-Silva
Affiliation:
Marine Algae Laboratory, Institute of Biosciences, São Paulo University, São Paulo, Brazil
Vanessa Sayuri Osaki
Affiliation:
Marine Algae Laboratory, Institute of Biosciences, São Paulo University, São Paulo, Brazil
Frederico Pereira Brandini
Affiliation:
Oceanographic Institute, São Paulo University, São Paulo, Brazil
Peter Convey
Affiliation:
British Antarctic Survey, Cambridge, UK Department of Zoology, University of Johannesburg, Johannesburg, South Africa Biodiversity of Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile Cape Horn International Center, Puerto Williams, Chile
Luiz Henrique Rosa
Affiliation:
Microbiology Department, Minas Gerais Federal University, Belo Horizonte, Brazil

Abstract

This study provides new species records (NRs) of macroalgal assemblages present in rocky habitats from the South Shetland Islands (SSI) and north-eastern Antarctic Peninsula (EAP), Weddell Sea. Surveys were conducted during the summers of 2013/2014 to 2017/2018 at Elephant, Deception, Half Moon and Vega islands. Data from the present study and those available in the literature from the western Antarctic Peninsula (WAP) were combined to provide an updated checklist, giving insights into macroecology and potential changes in thermohaline circulation patterns. A total of 48 macroalgal taxa were identified from our sampling, with eight representing NRs to the EAP sector of the Weddell Sea and five representing NRs to the SSI. Statistical differences among the assemblages from the SSI, WAP and EAP were identified. NRs, including opportunistic species and new information about the biogeographical distributions of species reported here, give insights into ecoregional connectivity and environmental changes. This study updates macroalgal diversity records in regions that are currently experiencing the impacts of climate change. Future and ongoing monitoring for conservation purposes is required to detect non-native species, new dispersal pathways and patterns related to thermohaline anomalies in Antarctic waters.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo-Preckler, C., Figuerola, B., Núñez-Pons, L., Moles, J., Martín-Martín, R., Rull-Lluch, J., et al. 2018. Macrobenthic patterns at the shallow marine waters in the caldera of the active volcano of Deception Island, Antarctica. Continental Shelf Research, 157, 10.1016/j.csr.2018.02.005.CrossRefGoogle Scholar
Amsler, C.D., Iken, K., McClintock, J.B., et al. 2005. Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Mar Ecol Prog Ser, 294, 141159. 10.3354/meps294141CrossRefGoogle Scholar
Amsler, C.D., McClintock, J.B., & Baker, B.J. 2020. Chemical Mediation of Antarctic Macroalga-Grazer Interactions. Chapter 17. In GÓMEZ, I. & HUOVINEN, P., eds, Antarctic seaweeds, 1st edition. Cham: Springer International Publishing. 10.1007/978-3-030-39448-6_17Google Scholar
Barnes, D.K.A., Hodgson, D.A., Convey, P., Allen, C. & Clarke, A. 2006. Incursion and excursion of Antarctic biota: past, present and future. Global Ecology and Biogeography, 15, 121142.CrossRefGoogle Scholar
Bussolini, L.T. & Waters, J.M. 2015. Genetic analyses of rafted macroalgae reveal regional oceanographic connectivity patterns. Journal of Biogeography, 42, 10.1111/jbi.12491.CrossRefGoogle Scholar
Convey, P., Biersma, E.M., Casanova-Katny, A. & Maturana, C.S. 2020. Refuges of Antarctic diversity. In Oliva, M. & Ruiz-Fernández, J., eds, Past Antarctica. Burlington, VT: Academic Press, 181200.CrossRefGoogle Scholar
Convey, P., Stevens, M.I., Hodgson, D.A., Smellie, J.L., Hillenbrand, C.-D., Barnes, D.K.A., et al. 2009. Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews, 28, 30353048.CrossRefGoogle Scholar
Davies, B.J., Hambrey, M.J., Smellie, J.L., Carrivick, J.L. & Glasser, N.F. 2012. Antarctic Peninsula ice sheet evolution during the Cenozoic Era. Quaternary Science Reviews, 31, 10.1016/j.quascirev.2011.10.012.CrossRefGoogle Scholar
Dubrasquet, H., Reyes, J., Sanchez, R.P., Valdivia, N. & Guillemin, M.L. 2018. Molecular-assisted revision of red macroalgal diversity and distribution along the western Antarctic Peninsula and South Shetland Islands. Cryptogamie Algologie, 39, 10.7872/crya/v39.iss4.2018.409.CrossRefGoogle Scholar
Fraser, C.I., Morrison, A. & Olmedo Rojas, P. 2020. Biogeographic Processes Influencing Antarctic and sub-Antarctic Seaweeds. In Gómez, I. & Huovinen, P., eds, Antarctic seaweeds, 1st edition. Cham: Springer International Publishing, 4358.Google Scholar
Fraser, C.I., Zuccarello, G.C., Spencer, H.G., Salvatore, L.C. & Garcia, G.R. 2013. Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. PloS ONE, 8, 10.1371/journal.pone.0069138.CrossRefGoogle ScholarPubMed
Fraser, C.I., Morrison, A.K., Hogg, A.M., Macaya, E.C., van Sebille, E., Ryan, P.G., et al. 2018. Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change, 8, 10.1038/s41558-018-0209-7.CrossRefGoogle Scholar
Gallardo, T., Pérez-Ruzafa, I.M., Flores-Moya, A. & Conde, F. 1999. New collections of benthic marine algae from Livingston and Deception islands (South Shetland Islands) and Trinity Island (Bransfield Strait), Antarctica. Botanica Marina, 42, 10.1515/bot.1999.009.CrossRefGoogle Scholar
Gómez, I. & Huovinen, P. 2015. Lack of physiological depth patterns in conspecifics of endemic Antarctic brown algae: a trade-off between UV stress tolerance and shade adaptation? PloS ONE, 10, 10.1371/journal.pone.0134440.CrossRefGoogle ScholarPubMed
González-Wevar, C.A., Segovia, N.I., Rosenfeld, S., Maturana, C.S., Jeldres, V., Pinochet, R., et al. 2022. Seven snail species hidden in one: biogeographic diversity in an apparently widespread periwinkle in the Southern Ocean. Journal of Biogeography, 49, 10.1111/jbi.14453.CrossRefGoogle Scholar
Griffiths, H.J. & Waller, C.L. 2016. The first comprehensive description of the biodiversity and biogeography of Antarctic and sub-Antarctic intertidal communities. Journal of Biogeography, 43, 10.1111/jbi.12708.CrossRefGoogle Scholar
Guillemin, M.L., Dubrasquet, H., Reyes, J. & Valero, M. 2018. Comparative phylogeography of six red algae along the Antarctic Peninsula: extreme genetic depletion linked to historical bottlenecks and recent expansion. Polar Biology, 41, 10.1007/s00300-017-2244-7.CrossRefGoogle Scholar
Guiry, M.D. & Guiry, G.M. 2023. AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway. Retrieved from http://www.algaebase.orgGoogle Scholar
Hommersand, M.H., Moe, R.L., Amsler, C.D. & Fredericq, S. 2009. Notes on the systematics and biogeographical relationships of Antarctic and sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Botanica Marina, 52, 10.1515/bot.2009.081.CrossRefGoogle Scholar
Hughes, K.A., Pertierra, L.R., Molina-Montenegro, M.A. & Convey, P. 2015. Biological invasions in Antarctica: what is the current status and can we respond? Biodiversity and Conservation, 24, 10.1007/s10531-015-0896-6.CrossRefGoogle Scholar
Hughey, J.R., Leister, G.L., Gabrielson, P.W. & Hommersand, M.H. 2020. Sarcopeltis gen. nov. (Gigartinaceae, Rhodophyta), with S. skottsbergii comb. Nov. from southern South America and S. antarctica sp. nov. from the Antarctic Peninsula. Phytotaxa, 468, 10.11646/phytotaxa.468.1.4.CrossRefGoogle Scholar
Jordan, T.A., Riley, T.R. & Siddoway, C.S. 2020. The geological history and evolution of West Antarctica. Nature Reviews Earth & Environment, 1, 10.1038/s43017-019-0013-6CrossRefGoogle Scholar
Lamb, I. & Zimmermann, M.H. 1977. Benthic marine algae of the Antarctic Peninsula. Antarctic Research Series, 24, 10.1029/AR023p0130.Google Scholar
López, B.A., Macaya, E.C., Rivadeneira, M.M., Tala, F., Tellier, F. & Thiel, M. 2018. Epibiont communities on stranded kelp rafts of Durvillaea antarctica (Fucales, Phaeophyceae). Do positive interactions facilitate range extensions? Journal of Biogeography, 45, 10.1111/jbi.13375.Google Scholar
McCarthy, A.H., Peck, L.S., Hughes, K.A. & Aldridge, D.C. 2019. Antarctica: the final frontier for marine biological invasions. Global Change Biology, 25, 10.1111/gcb.14600.CrossRefGoogle ScholarPubMed
Macaya, E.C., Tala, F., Hinojosa, I.A. & Rothäusler, E. 2020. Detached seaweeds as important dispersal agents across the Southern Ocean. In Gómez, I. & Huovinen, P., eds, Antarctic seaweeds, 1st edition. Cham: Springer International Publishing, 5982.Google Scholar
Moe, R.L. & DeLaca, T.E. 1976. Occurrence of macroscopic algae along the Antarctic Peninsula. Antarctic Journal of the United States, 11, 2024.Google Scholar
Müller, R., Laepple, T., Bartsch, I. & Wiencke, C. 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 52, 10.1515/bot.2009.080.CrossRefGoogle Scholar
Mystikou, A., Asensi, A.O., DeClerck, O., Müller, D.G., Peters, A.F., Tsiamis, K., et al. 2016. New records and observations of macroalgae and associated pathogens from the Falkland Islands, Patagonia and Tierra del Fuego. Botanica Marina, 59, 10.1515/bot-2015-0071.CrossRefGoogle Scholar
Mystikou, A., Peters, A.F., Asensi, A.O., Fletcher, K.I., Brickle, P., van West, P., et al. 2014. Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biology, 37, 10.1007/s00300-014-1547-1.CrossRefGoogle Scholar
Neushul, M. 1965. Diving observation of sub-tidal Antarctic marine vegetation. Botanica Marina, 8, 234243.CrossRefGoogle Scholar
Nuñez-Pons, L. & Avila, C. 2014. Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators. Polar Research, 3, 10.3402/polar.v33.21624.Google Scholar
Ocaranza-Barrera, P., González-Wevar, C., Guillemin, M.L., Rosenfeld, S. & Mansilla, A. 2019. Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. Journal of Applied Phycology, 31, 10.1007/s10811-018-1656-2.CrossRefGoogle Scholar
Oliveira, E.C., Pellizzari, F. & Oliveira, M.C. 2009. The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biology, 32, 10.1007/s00300-009-0663-9.CrossRefGoogle Scholar
Oliveira, M.C., Pellizzari, F., Medeiros, A.S. & Yokoya, N.S. 2020. Diversity of Antarctic seaweeds. In Gómez, I. & Huovinen, P., eds, Antarctic seaweeds, 1st edition. Cham: Springer International Publishing, 2342.Google Scholar
Papenfuss, G.F. 1964. Catalogue and bibliography of Antarctic and Sub-Antarctic benthic marine algae. Antarctic Research Series, 1, 176.Google Scholar
Pehlke, H., Brey, T., Konijnenberg, R. & Teschke, K. 2022. A tool to evaluate accessibility due to sea-ice cover: a case study of the Weddell Sea, Antarctica. Antarctic Science, 34, 10.1017/S0954102021000523.CrossRefGoogle Scholar
Pellizzari, F., Rosa, L.H. & Yokoya, N.S. 2020. Biogeography of Antarctic seaweeds facing climate changes In Gómez, I. & Huovinen, P., eds, Antarctic seaweeds, 1st edition. Cham: Springer International Publishing, 83102.Google Scholar
Pellizzari, F., Santos-Silva, M.C, Medeiros, A., Oliveira, M.C., Yokoya, N.S., Pupo, D. & Rosa, L. 2017. Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biology, 40, 10.1007/s00300-017-2092-5.CrossRefGoogle Scholar
Peters, K.J., Amsler, C.D., Amsler, M.O., McClintock, J.B., Dunbar, R.B. & Baker, B.J. 2005. A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia, 44, 453463.CrossRefGoogle Scholar
Quartino, M.L, Deregibus, D., Campana, G.L., Latorre, G.E.J. & Momo, F.R. 2013. Evidence of macroalgal colonization on newly ice-free areas following glacial retreat in Potter Cove (South Shetland Islands), Antarctica. PloS ONE, 8, 10.1371/journal.pone.0058223.CrossRefGoogle ScholarPubMed
Ricker, R.-W. 1987. Taxonomy and biogeography of Macquarie Island seaweeds. London: British Museum (Natural History), 344 pp.Google Scholar
Robertson, R., Visbeck, M., Gordon, A. & Fahrbach, E. 2002. Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Research II, 49, 10.1016/S0967-0645(02)00159-5.Google Scholar
Sanches, P.F., Pellizzari, F. & Horta, P.A. 2016. Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: an evaluation of the role of the Antarctic Circumpolar Current). Journal of Sea Research, 110, 10.1016/j.seares.2016.02.002.CrossRefGoogle Scholar
Shilling, A.J., Heiser, S., Amsler, C.D., McClintock, J.B. & Baker, B.J. 2021. Hidden diversity in an Antarctic algal forest: metabolomic profiling linked to patterns of genetic diversification in the Antarctic red alga Plocamium sp. Marine Drugs, 19, 10.3390/md19110607.CrossRefGoogle Scholar
Skottsberg, C. 1941. Communities of marine algae in subantarctic and Antarctic waters. Kungliga Svenska Vetenskapsakademiens Handlingar, Ser 3, 19, 192.Google Scholar
Turner, J., Bindschadler, R., Convey, P., di Prisco, G., Fahrbach, E., Gutt, J., et al. 2009. Antarctic climate change and the environment. Cambridge: Scientific Committee on Antarctic Research, xi + 526 pp.Google Scholar
Turner, J., Guarino, M.V., Arnatt, J., Jena, B., Marshall, G.J., Phillips, T., et al. 2020. Recent decrease of summer sea ice in the Weddell Sea, Antarctica. Geophysical Research Letters, 47, 10.1029/2020GL087127.CrossRefGoogle Scholar
Valdivia, N., Diaz, M.J., Holtheuer, J., Garrido, I., Huovinen, P. & Gómez, I. 2014. Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS ONE, 9, 10.1371/journal.pone.0100714.CrossRefGoogle Scholar
Veit-Kohler, G., Durst, S., Schuckenbrock, J., Hauquier, F., Duran, S.L., Dorschel, B., et al. 2018. Oceanographic and topographic conditions structure benthic meiofauna communities in the Weddell Sea, Bransfield Strait and Drake Passage (Antarctic). Progress in Oceanography, 162, 10.1016/j.pocean.2018.03.005.CrossRefGoogle Scholar
Vernet, M., Geibert, W., Hoppema, M., Brown, P.J., Haas, C., Hellmer, H.H., et al. 2019. The Weddell Gyre, Southern Ocean: present knowledge and future challenges. Reviews of Geophysics, 57, 10.1029/2018rg000604.CrossRefGoogle Scholar
Wiencke, C. & Clayton, M.N. 2002. Synopses of the Antarctic benthos: Volume 9: Antarctic seaweeds. Wägele, J.W., ed. Ruggell: A.R.G. Gantner Verlag KG, 239 pp.Google Scholar
Wiencke, C., Amsler, C. & Clayton, M. 2014. Macroalgae. In De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B. & Udekemd'Acoz, C., eds, Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 6673.Google Scholar
Wiencke, C., Amsler, C.D., Clayton, M.N. & Van de Putte, A. 2020. SCAR biogeographic atlas of the Southern Ocean – macroalgae – data. Antarctic Biodiversity Information Facility (ANTABIF). Occurrence dataset. 10.15468/tybssc GBIF.org.Google Scholar
WOD/NOAA. 2021. World Ocean Database from the National Oceanic Atmospheric Administration, retrieved in 2021 from ncei.noaa.gov/world-ocean-database/Google Scholar
Young, R.M., von Salm, J.L., Amsler, M., Lopez-Bautista, J., Amsler, C.D., McClintock, J.B. & Baker, B.J. 2013. Site-specific variability in the chemical diversity of the Antarctic red alga Plocamiumcartilagineum‘. Marine Drugs, 11, 10.3390/md11062126.CrossRefGoogle ScholarPubMed
Supplementary material: File

Pellizzari et al. supplementary material

Pellizzari et al. supplementary material

Download Pellizzari et al. supplementary material(File)
File 791.3 MB