Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:05:46.323Z Has data issue: false hasContentIssue false

Organic-walled microfossils from the north-west Weddell Sea, Antarctica: records from surface sediments after the collapse of the Larsen-A and Prince Gustav Channel ice shelves

Published online by Cambridge University Press:  21 January 2013

Anna J. Pieńkowski*
Affiliation:
School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
Fabienne Marret
Affiliation:
School of Environmental Sciences, University of Liverpool, Roxby Building, Liverpool L69 7ZT, UK
James D. Scourse
Affiliation:
School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
David N. Thomas
Affiliation:
School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK Marine Research Centre, Finnish Environment Institute, Helsinki, Finland Arctic Research Centre, Aarhus University, Aarhus, Denmark

Abstract

Surface sediments from six box cores along the north-eastern Antarctic Peninsula document the dinoflagellate cyst (= dinocyst) and other non-pollen palynomorph (NPP) content soon after overlying ice shelves collapsed. Prince Gustav Channel (PGC) and Larsen-A (LA) areas exhibited markedly different dinocyst abundances, concentrations being low in LA (0–20 cysts g-1) and high in PGC (2600–9100 cysts g-1, average: c. 3800 cysts g-1). Since similar water masses impact both areas, differences may be due to low biological productivity, limited sediment accumulation, and/or restricted fine-grain deposition at Larsen-A. Islandinium minutum (Harland & Reid in Harland et al.) Head et al. dominated dinocyst assemblages, occurring as both excysted and encysted forms (lesser abundance). Other taxa (Echinidinium cf. transparantum Zonneveld, Impagidinium pallidum Bujak, Bitectatodinium tepikiense Wilson, Operculodinium centrocarpum Wall & Dale, Brigantedinium spp., Selenopemphix antarctica Marret & de Vernal, Polykrikos? sp. A, and Polykrikos schwartzii Bütschli) were rare. Such assemblage composition is unusual compared to previously published Southern Ocean data, but may be specific to ice shelf and/or recently ice-free environments. Alternatively, it may be attributable to excessive production facilitated by environmental factors and/or abundant food, or similar cyst morphologies produced by different dinoflagellates. Accompanying NPPs included zooplankton remains, acritarchs, and freshwater algae. Tintinnid loricae were most abundant (max. 800 g-1), followed by foraminiferal linings (max. 320 g-1), and the acritarch Palaeostomocystis fritilla (Bujak) Roncaglia (max. 150 g-1). Collectively, NPPs were more abundant in PGC compared to LA samples.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armand, L.K.Leventer, A. 2010. Palaeo sea ice distribution and reconstruction derived from the geological record. In Thomas, D.N.&Dieckmann, G.S.,eds. Sea ice, 2nd ed. Oxford: Wiley-Blackwell, 469529.Google Scholar
Boltovskoy, D., Dinofrio, E.O.Alder, V.A. 1990. Intraspecific variability in Antarctic tintinnids: the Cymatocylis affinis/convallaria species group. Journal of Plankton Research, 12, 403413.CrossRefGoogle Scholar
Buck, K.R., Garrison, D.L.Hopkins, T.L. 1992. Abundance and distribution of tintinnid ciliates in an ice-edge zone during the austral autumn. Antarctic Science, 4, 38.CrossRefGoogle Scholar
Buffen, A., Leventer, A., Rubin, A.Hutchins, T. 2007. Diatom assemblages in surface sediments of the northwestern Weddell Sea, Antarctic Peninsula. Marine Micropaleontology, 62, 730.CrossRefGoogle Scholar
Caron, D.A.Gast, R.J. 2010. Heterotropic protists associated with sea ice. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice, 2nd ed. Oxford: Wiley-Blackwell, 327356.Google Scholar
Cearreta, A.Murray, J.W. 2000. AMS 14C dating of Holocene estuarine deposits: consequences of high-energy and reworked foraminifera. The Holocene, 10, 155159.CrossRefGoogle Scholar
Crouch, E.M., Mildenhall, D.C.Neil, H.L. 2010. Distribution of organic-walled marine and terrestrial palynomorphs in surface sediments, offshore eastern New Zealand. Marine Geology, 270, 235256.CrossRefGoogle Scholar
De Vernal, A., Eynaud, F., Henry, M., Hillaire-Marcel, C., Londeix, L., Mangin, S., Matthiessen, J., Marret, F., Radi, T., Rochon, A., Solignac, S.Turon, J.-L. 2005. Reconstruction of sea-surface conditions at middle to high latitudes of the Northern Hemisphere during the Last Glacial Maximum (LGM) based on dinoflagellate cyst assemblages. Quaternary Science Reviews, 24, 897924.CrossRefGoogle Scholar
Ellegaard, M., Kulis, D.M.Anderson, D.M. 1998. Cysts of Danish Gymnodinium nolleri Ellegaard et Moestrup sp. ined. (Dinophyceae): studies on encystment, excystment and toxicity. Journal of Plankton Research, 20, 17431755.CrossRefGoogle Scholar
Esper, O.Zonneveld, K.A.F. 2007. The potential of organic-walled dinoflagellate cysts for the reconstruction of past sea-surface conditions in the Southern Ocean. Marine Micropaleontology, 65, 185212.CrossRefGoogle Scholar
Hannah, M. 2006. The palynology of ODP site 1165, Prydz Bay, East Antarctica: a record of Miocene glacial advance and retreat. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 120133.CrossRefGoogle Scholar
Harland, R.Pudsey, C.J. 1999. Dinoflagellate cysts from sediment traps deployed in the Bellingshausen, Weddell and Scotia seas, Antarctica. Marine Micropaleontology, 37, 7799.CrossRefGoogle Scholar
Harland, R., FitzPatrick, M.E.J.Pudsey, C.J. 1999. Latest Quaternary dinoflagellate cyst climatostratigraphy for three cores from the Falkland Trough, Scotia and Weddell seas, Southern Ocean. Review of Paleobotany and Palynology, 107, 265281.CrossRefGoogle Scholar
Harland, R., Pudsey, C.J., Howe, J.A.FitzPatrick, M.E.J. 1998. Recent dinoflagellate cysts in a transect from the Falkland Trough to the Weddell Sea, Antarctica. Palaeontology, 41, 10931131.Google Scholar
Head, M.J., Harland, R.Matthiessen, J. 2001. Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science, 16, 621636.CrossRefGoogle Scholar
Kjaeret, A.H., Naustvoll, L.-J.Paasche, E. 2000. Ecology of the heterotrophic dinoflagellate genus Protoperidinium in the inner Oslofjord (Norway). Sarsia, 85, 453460.CrossRefGoogle Scholar
Kopczyńska, E.E., Savoye, N., Dehairs, F., Cardinal, D.Elskens, M. 2007. Spring phytoplankton assemblages in the Southern Ocean between Australia and Antarctica. Polar Biology, 31, 7788.CrossRefGoogle Scholar
Kunz-Pirrung, M. 1998. Rekonstruktion der Oberflächenmassen in der östlichen Laptevsee im Holozän anhand von aquatischen Palynomorphen. Berichte zur Polarforschung, 281, 1117.Google Scholar
Lemke, P., Ren, J., Alley, R.B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R.H.Zhang, T. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.&Miller, H.L.,eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 337383.Google Scholar
Marret, F.de Vernal, A. 1997. Dinoflagellate cyst distribution in surface sediments of the southern Indian Ocean. Marine Micropaleontology, 29, 367392.CrossRefGoogle Scholar
Marret, F.Zonneveld, K. 2003. Atlas of modern organic-walled dinoflagellate cyst distribution. Review of Palaeobotany and Palynology, 125, 1200.CrossRefGoogle Scholar
Marret, F., de Vernal, A., Benderra, F.Harland, R. 2001. Late Quaternary sea-surface conditions at DSDP Hole 594 in the southwest Pacific Ocean based on dinoflagellate cyst assemblages. Journal of Quaternary Science, 16, 739751.CrossRefGoogle Scholar
Matsuoka, K., Kawami, H., Nagai, S., Iwataki, M.Takayama, H. 2009. Re-examination of cyst-motile relationships of Polykrikos kofoidii Chatton and Polykrikos schwartzii Bütschli (Gymnodiniales, Dinophyceae). Review of Palaeobotany and Palynology, 154, 7990.CrossRefGoogle Scholar
McKenzie, C.H.Cox, E.R. 1991. Spatial and seasonal changes in the species composition of armoured dinoflagellates in the southwestern Atlantic Ocean. Polar Biology, 11, 139144.CrossRefGoogle Scholar
Mudie, P.J.Rochon, A. 2001. Distribution of dinoflagellate cysts in the Canadian Arctic marine region. Journal of Quaternary Science, 16, 603620.CrossRefGoogle Scholar
Murray, J.W.Pudsey, C.J. 2004. Living (stained) and dead foraminifera from the newly ice-free Larsen Ice Shelf, Weddell Sea, Antarctica: ecology and taphonomy. Marine Micropaleontology, 53, 6781.CrossRefGoogle Scholar
Nicholls, K.W., Pudsey, C.J.Morris, P. 2004. Summertime water masses off the northern Larsen C Ice Shelf, Antarctica. Geophysical Research Letters, 10.1029/2004GL019924.Google Scholar
Pieńkowski, A.J., Marret, F., Thomas, D.N., Scourse, J.D.Dieckmann, G.S. 2009. Dinoflagellates in a fast-ice-covered inlet of the Riiser-Larsen Ice Shelf (Weddell Sea). Polar Biology, 32, 13311343.CrossRefGoogle Scholar
Pieńkowski, A.J., Mudie, P.J., England, J.H., Smith, J.N.Furze, M.F.A. 2011. Late Holocene environmental conditions in Coronation Gulf, southwestern Canadian Arctic Archipelago: evidence from dinoflagellate cysts, other non-pollen palynomorphs, and pollen. Journal of Quaternary Science, 26, 839853.CrossRefGoogle Scholar
Pieńkowski, A.J., England, J.H., Furze, M.F.A., Marret, F., Eynaud, F., Vilks, G., MacLean, B., Blasco, S.Scourse, J.D. 2012. The deglacial to postglacial marine environments of SE Barrow Strait, Canadian Arctic Archipelago. Boreas, 41, 141179.CrossRefGoogle Scholar
Pudsey, C.J.Evans, J. 2001. First survey of Antarctic subice shelf sediments reveals mid-Holocene ice shelf retreat. Geology, 29, 787790.2.0.CO;2>CrossRefGoogle Scholar
Pudsey, C.J., Allen, C., Dowdeswell, J., Evans, J., Lens, P., Morris, P., Nicholls, K., O'Cofaigh, C., Pike, J., Preston, M.Skinner, A. 2002. RRS James Clark Ross JR71 cruise report. Marine geology and geophysics of the continental shelf and slope of the Antarctic Peninsula and in the NW Weddell Sea. Cambridge: British Antarctic Survey, 72 pp.Google Scholar
Riedel, A., Michel, C., Poulin, M.Lessard, S. 2003. Taxonomy and abundance of microalgae and protists at a first-year sea ice station near Resolute Bay, Nunavut, spring to early summer 2001. Canadian Data Report of Hydrography and Ocean Sciences, 159, 154.Google Scholar
Roberts, D., Craven, M., Cai, M., Allison, I.Nash, G. 2007. Protists in the marine ice of the Amery Ice Shelf, East Antarctica. Polar Biology, 30, 143153.CrossRefGoogle Scholar
Roncaglia, L. 2004. New acritarch species from Holocene sediments in central West Greenland. Grana, 43, 8188.CrossRefGoogle Scholar
Rott, H., Skvarca, P.Nagler, T. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 296, 20202024.Google Scholar
Sherr, E.B.Sherr, B.F. 2007. Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea. Marine Ecology Progress Series, 352, 187197.CrossRefGoogle Scholar
Stoecker, D.K., Buck, K.R.Putt, M. 1991. Photosynthetic dinoflagellates and their cysts characteristics of the land-fast ice. Antarctic Journal of the United States, 26(5), 143144.Google Scholar
Storkey, C.A. 2006. Distribution of marine palynomorphs in surface sediments, Prydz Bay, Antarctica. MSc thesis, Victoria University of Wellington, 177 pp. [Unpublished.]Google Scholar
Thompson, G.A.Alder, V.A. 2005. Patterns in tintinnid species composition and abundance in relation to hydrological conditions of the southwestern Atlantic during austral spring. Aquatic Microbial Ecology, 40, 85101.CrossRefGoogle Scholar
Thomson, P.G., Wright, S.W., Bolch, C.J.S., Nichols, P.D., Skerratt, J.H.McMinn, A. 2004. Antarctic distribution, pigment and lipid composition, and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae). Journal of Phycology, 40, 867873.CrossRefGoogle Scholar
Umani, S.F., Monti, M., Bergamasco, A., Cabrini, M., de Vittor, C., Burba, N.del Negro, P. 2005. Plankton community structure and dynamics versus physical structure from Terra Nova Bay to Ross Ice Shelf (Antarctica). Journal of Marine Systems, 55, 3146.CrossRefGoogle Scholar
Warny, S., Askin, R.A., Hannah, M.J., Mohr, B.A.R., Raine, I., HarwoodD.M., Florindo, F. D.M., Florindo, F. & the SMS Science Team. 2009. Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology, 37, 955958.CrossRefGoogle Scholar