Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T07:26:54.395Z Has data issue: false hasContentIssue false

Population subdivision in the Antarctic toothfish (Dissostichus mawsoni) revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs)

Published online by Cambridge University Press:  23 January 2008

Kristen L. Kuhn
Affiliation:
College of Marine and Earth Studies, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA Current address: Department of Ecology and Evolutionary Biology, Yale University, 358 Environmental Sciences Center, PO Box 208105, New Haven, CT 06520-8105, USA
Patrick M. Gaffney*
Affiliation:
College of Marine and Earth Studies, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
*
*corresponding author:pgaffney@udel.edu

Abstract

The Antarctic toothfish (Dissostichus mawsoni) exhibits a circumpolar distribution in coastal waters south of the Antarctic Polar Front. For a preliminary evaluation of global population structure in this species, we examined four mitochondrial regions and 13 nuclear gene fragments in samples from four CCAMLR Subareas in the Southern Ocean (Australian Antarctic Territory (Subarea 58.4.2), Ross Dependency (Subareas 88.1 and 88.2) and the South Shetland Islands (Subarea 48.1). Significant genetic differentiation within and among locations was observed for both mitochondrial and nuclear loci. The single nucleotide polymorphism (SNP) markers developed here will be useful for more extensive analyses of population structure in this species.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akula, N., Chen, Y.S., Hennessy, K., Schulze, T.G., Singh, G. & McMahon, F.J. 2002. Utility and accuracy of template-directed dye-terminator incorporation with fluorescence-polarization detection for genotyping single nucleotide polymorphisms. BioTechniques, 32, 10721978.CrossRefGoogle ScholarPubMed
Appleyard, S.A., Ward, R.D. & Williams, R. 2002. Population structure of the Patagonian toothfish around Heard, McDonald and Macquarie islands. Antarctic Science, 14, 364373.CrossRefGoogle Scholar
Avise, J.C. 2004. Molecular markers, natural history and evolution. Sunderland, MA: Sinauer Associates, 684 pp.Google Scholar
Bandelt, H.-J., Forster, P. & Roehl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 3748.CrossRefGoogle ScholarPubMed
Benjamini, Y. & Yekutieli, D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 11651188.CrossRefGoogle Scholar
Brumfield, R.T., Beerli, P., Nickerson, D.A. & Edwards, S.V. 2003. The utility of single nucleotide polymorphisms in inferences of population history. Trends in Ecology and Evolution, 18, 249256.CrossRefGoogle Scholar
Burchett, M.S., DeVries, A.L. & Briggs, A.J. 1984. Age determination and growth of Dissostichus mawsoni (Norman, 1937) (Pisces, Nototheniidae) from McMurdo Sound (Antarctica). Cybium, 8, 7173.Google Scholar
Chen, X., Levine, L. & Kwok, P.-Y. 1999. Fluorescence polarization in homogeneous nucleic acid analysis. Genome Research, 9, 492498.CrossRefGoogle ScholarPubMed
Chow, S. 1998. Universal PCR primer for calmodulin gene intron in fish. Fisheries Science, 64, 9991000.CrossRefGoogle Scholar
Chow, S. & Hazama, K. 1998. Universal PCR primers for S7 ribosomal protein gene introns in fish. Molecular Ecology, 7, 12551256.Google ScholarPubMed
Chow, S. & Nakadate, M. 2004. PCR primers for fish G6PD gene intron and characterization of intron length variation in the albacore Thunnus alalunga. Molecular Ecology Notes, 4, 391393.CrossRefGoogle Scholar
DeWitt, H., Heemstra, P.C. & Gon, O. 1990. Nototheniidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology, 279331.Google Scholar
Eastman, J.T. 1993. Antarctic fish biology: evolution in a unique environment. San Diego, CA: Academic Press, 322 pp.Google Scholar
Eastman, J.T. & DeVries, A.L. 2000. Aspects of body size and gonadal histology in the Antarctic toothfish, Dissostichus mawsoni, from McMurdo Sound, Antarctica. Polar Biology, 23, 189195.CrossRefGoogle Scholar
Elfstrom, C.M., Smith, C.T. & Seeb, J.E. 2006. Thirty-two single nucleotide polymorphism markers for high-throughput genotyping of sockeye salmon. Molecular Ecology Notes, 6, 12551259.CrossRefGoogle Scholar
Everson, I. 1984. Fish biology. In Laws, R.M., ed. Antarctic ecology, vol. 2. London: Academic Press, 491532.Google Scholar
Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin v. 3.01: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 4750.Google Scholar
Fenaughty, J.M. 2006. Geographical differences in the condition, reproductive development, sex ratio and length distribution of Antarctic toothfish (Dissostichus mawsoni) from the Ross Sea, Antarctica (CCAMLR Subarea 88.1). CCAMLR Science, 13, 2745.Google Scholar
Goudet, J. 1995. FSTAT (v.1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485486.CrossRefGoogle Scholar
Guo, S. & Thompson, E. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48, 361372.CrossRefGoogle ScholarPubMed
Hanchet, S.M., Horn, P.L. & Stevenson, M.L. 2001. The New Zealand toothfish fishery in Subarea 88.1 from 1997/98 to 2000/01. Document WG-FSA-01/63. Hobart, TAS: CCAMLR, 41 pp.Google Scholar
Helms, C., Cao, L., Krueger, J.G., Wijsman, E.M., Chamian, F., Gordon, D., Heffernan, M., Daw, J.A.W., Robarge, J., Ott, J., Kwok, P-Y., Menter, A. & Bowcock, A.M. 2003. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nature Genetics, 35, 349356.CrossRefGoogle ScholarPubMed
Horn, P.L., Sutton, C.P. & DeVries, A.L. 2003. Evidence to support the annual formation of growth zones in otoliths of Antarctic toothfish (Dissostichus mawsoni). CCAMLR Science, 10, 125138.Google Scholar
Hsu, T.M., Chen, X., Duan, S., Miller, R.D. & Kwok, P-Y. 2001. Universal SNP genotyping assay with fluorescence polarization detection. BioTechniques, 31, 561570.CrossRefGoogle ScholarPubMed
Ishikawa, S., Kimura, Y., Tokai, T., Tsukamoto, K. & Nishida, M. 2001. Genetic variation in the mitochondrial and nuclear DNA of the Japanese conger Conger myriaster. Fisheries Science, 67, 10811087.CrossRefGoogle Scholar
Kuhn, K.L. 2007. Assessment of genetic structure in three Southern Ocean fishes revealed by mitochondrial and nuclear single nucleotide polymorphisms (SNPs). PhD thesis, University of Delaware, 252 pp. [Unpublished.]Google Scholar
Kuhn, K.L. & Gaffney, P.M. 2006. Preliminary assessment of population structure in the mackerel icefish (Champsocephalus gunnari). Polar Biology, 29, 927935.CrossRefGoogle Scholar
La Mesa, M. 2007. The utility of otolith microstructure in determining the timing and position of the first annulus in juvenile Antarctic toothfish (Dissostichus mawsoni) from the South Shetland Islands. Polar Biology, 10.1007/s00300-007-0281-3.CrossRefGoogle Scholar
McDonald, M.M., Smith, M.H., Smith, M.W., Novak, J.M., Johns, P.E. & DeVries, A.L. 1992. Biochemical systematics of notothenioid fishes from Antarctica. Biochemical Systematics and Ecology, 20, 233241.CrossRefGoogle Scholar
Meyer, A., Kocher, T.D., Basasibwaki, P. & Wilson, A.C. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 347, 550553.CrossRefGoogle Scholar
Morin, P., Luikart, G., Wayne, R. & the SNP Workshop Group. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology and Evolution, 19, 208216.CrossRefGoogle Scholar
Narum, S.R. 2006. Beyond Bonferroni: less conservative analyses for conservation genetics. Conservation Genetics, 7, 783787.CrossRefGoogle Scholar
Neff, M.M., Neff, J.D., Chory, J. & Pepper, A.E. 1998. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant Journal, 14, 387392.CrossRefGoogle ScholarPubMed
Nei, M. 1978. Estimation of average heterozygosity and genetic distances from a small number of individuals. Genetics, 89, 583590.CrossRefGoogle ScholarPubMed
Orsi, A.H., Whitworth, T. & Nowlin, W.D. Jr 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641673.CrossRefGoogle Scholar
Pakhomov, E. & Pankratov, S. 1992. Feeding of juvenile notothenioid fishes of the Indian Ocean sector of the Antarctic. Journal of Ichthyology, 32, 3141.Google Scholar
Palumbi, S.R., Martin, A., Romano, S., McMillan, W.O., Stice, L. & Grabowski, G. 1991. The simple fools guide to PCR. Honolulu, HI: Dept of Zoology, University of Hawaii.Google Scholar
Park, L.K., Brainard, M.A., Dightman, D.A. & Winans, G.A. 1993. Low levels of intraspecific variation in the mitochondrial DNA of chum salmon (Oncorhynchus keta). Molecular Marine Biology and Biotechnology, 2, 362370.Google ScholarPubMed
Parker, R.W., Paige, K.N. & DeVries, A.L. 2002. Genetic variation among populations of the Antarctic toothfish: evolutionary insights and implications for conservation. Polar Biology, 25, 256261.CrossRefGoogle Scholar
Quattro, J.M. & Jones, W.J. 1999. Amplification primers that target locus-specific introns in actinopterygian fishes. Copeia, 1, 191196.CrossRefGoogle Scholar
Quattro, J.M., Jones, W.J., Grady, J.M. & Rohde, F.C. 2001. Gene-gene concordance and the phylogenetic relationships among rare and widespread pygmy sunfishes (genus Elassoma). Molecular Phylogenetics and Evolution, 18, 217226.CrossRefGoogle ScholarPubMed
Rogers, A.D., Morley, S., Fitzcharles, E., Jarvis, K. & Belchier, M. 2006. Genetic structure of Patagonian toothfish (Dissostichus eleginoides) populations on the Patagonian Shelf and Atlantic and western Indian Ocean Sectors of the Southern Ocean. Marine Biology, 149, 915924.CrossRefGoogle Scholar
Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X. & Rozas, R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 24962497.CrossRefGoogle ScholarPubMed
Sanchez, S., Dettaï, A., Bonillo, C., Ozouf-Costaz, C., Detrich, H.W. III & Lecointre, G. 2007. Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae. Polar Biology, 30, 155166.CrossRefGoogle Scholar
Seddon, J.M., Parker, H.G., Ostrander, E.A. & Ellegren, H. 2005. SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Molecular Ecology, 14, 503511.CrossRefGoogle ScholarPubMed
Shaw, P.W., Arkhipkin, A.I. & Al-Khairulla, H. 2004. Genetic structuring of Patagonian toothfish populations in the southwest Atlantic Ocean: the effects of the Atlantic Polar Front and deep-water troughs as barriers to genetic exchange. Molecular Ecology, 13, 32933303.CrossRefGoogle Scholar
Smith, P.J., Gaffney, P.M. & Purves, M. 2001. Brief communication: genetic markers for identification of Patagonian toothfish and Antarctic toothfish. Journal of Fish Biology, 58, 11901194.CrossRefGoogle Scholar
Smith, P.J. & Gaffney, P.M. 2005. Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers. CCAMLR Science, 12, 4351.Google Scholar
Smith, P.J. & McVeagh, M. 2000. Allozyme and microsatellite DNA markers of toothfish population structure in the Southern Ocean. Journal of Fish Biology, 57(Supp A), 7283.CrossRefGoogle Scholar
Stephens, M., Smith, N.J. & Donnelly, P. 2001. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978989.CrossRefGoogle ScholarPubMed
Streelman, J.T. & Karl, S.A. 1997. Reconstructing labroid evolution with single-copy nuclear DNA. Proceedings of the Royal Society of London, B264, 10111020.CrossRefGoogle Scholar
Sullivan, K.J., Smith, N.W.M., McKenzie, J. & Hanchet, S.M. 2003. A feasibility study for stock assessment of D. mawsoni in the Ross Sea (Subareas 88.1 and 88.2) using a tag and recapture experiment. Document WG-FSA-SAM-03/10. Hobart, TAS: CCAMLR, 22 pp.Google Scholar
Weir, B. & Cockerham, C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38, 13581370.Google ScholarPubMed
Yukhov, V.L. 1971. The range of Dissostichus mawsoni Norman and some features of its biology. Journal of Ichthyology, 11, 818.Google Scholar
Yukhov, V.L. 1982. Antarkticheskii klykach [The Antarctic toothfish]. Moscow: Nauka, 114 pp. [In Russian].Google Scholar