Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T06:40:29.401Z Has data issue: false hasContentIssue false

Short Note: Natural seasonal variability of aragonite saturation state within two Antarctic coastal ocean sites

Published online by Cambridge University Press:  03 March 2011

Ben I. McNeil*
Affiliation:
Climate Change Research Centre, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
Colm Sweeney
Affiliation:
Co-operative Institute for Research in Environmental Science, University of Colorado, Boulder, and the Earth System Research Laboratory, NOAA, USA
John A.E. Gibson
Affiliation:
Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, TAS 7001, Australia

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accornero, A., Manno, C., Esposito, F.Gambi, M.C. 2003. The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarctic Science, 15, 175188.CrossRefGoogle Scholar
Dickson, A.G.Millero, F.J. 1987. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Research I, 34, 17331743.CrossRefGoogle Scholar
Gibson, J.A.E.Trull, T. 1999. Annual cycle of fCO2 under sea ice and in open water in Prydz Bay, East Antarctica. Marine Chemistry, 66, 187200.CrossRefGoogle Scholar
Hunt, B.P.V., Pakhomov, E.A., Hosie, G.W., Siegel, V., Ward, P.Bernard, K. 2008. Pteropods in Southern Ocean ecosystems. Progress in Oceanography, 78, 193221.CrossRefGoogle Scholar
McNeil, B.I.Matear, R.J. 2008. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 105, 18 86018 864.CrossRefGoogle ScholarPubMed
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka, Y.Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organizms. Nature, 437, 681686.CrossRefGoogle Scholar
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E.Morel, F.M. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364367.CrossRefGoogle ScholarPubMed
Sweeney, C. 2003. The annual cycle of surface CO2 and O2 in the Ross Sea: a model for gas exchange on the continental shelves of Antarctica. Antarctic Research Series, 78, 295312.CrossRefGoogle Scholar