Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T14:54:10.486Z Has data issue: false hasContentIssue false

Snow recurrence sets the depth of dry permafrost at high elevations in the McMurdo Dry Valleys of Antarctica

Published online by Cambridge University Press:  30 July 2008

Christopher P. McKay*
Affiliation:
Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

Dry permafrost on Earth is unique to the Antarctic and is found in the upper elevations of the McMurdo Dry Valleys. Despite its widespread presence in the Dry Valleys, the factors that control the distribution of dry permafrost and the ice-cemented ground below it are poorly understood. Here I show, by a combination of theoretical analysis and field observations, that the recurrence of snow can explain the depth of dry permafrost and the location of ice-cemented ground in Antarctica. For data from Linnaeus Terrace at 1600–1650 m elevation in Upper Wright Valley a recurrence intervals of about two years explains the presence of ground ice at 25 cm depth, under 12.5 cm of dry permafrost. Snow recurrence periods longer than 10 years would create only dry permafrost at this site. The snow gradient in University Valley resulting from the windblown snow from the polar plateau creates a corresponding gradient in the depth to ice-cemented ground. On the floor of Beacon Valley, the presence of dry permafrost without underlying ice-cemented ground indicates snow recurrence intervals of more than 10 years and implies that the ancient massive ice in this valley is not stable. Snow recurrence may also set the depth to ground ice on Mars.

Type
Physical Science
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bockheim, J.G., Campbell, I.B. & McLeod, M. 2007. Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafrost and Periglacial Processes, 18, 217227.CrossRefGoogle Scholar
Campbell, G.S. 1977. An introduction to environmental physics. New York: Springer, 1517.Google Scholar
Campbell, I.B. & Claridge, G.G.C. 1987. Antarctica: soils, weathering processes, and environment. New York: Elsevier, 368 pp.Google Scholar
Campbell, I.B. & Claridge, G.G.C. 2006. Permafrost properties, patterns and processes in the Transantarctic Mountains region. Permafrost and Periglacial Processes, 17, 215232.CrossRefGoogle Scholar
Clow, G.D., McKay, C.P., Simmons, G.M. Jr & Wharton, R.W. Jr 1988. Climatological observations and predicted sublimation rates at Lake Hoare Antarctica. Journal of Climate, 1, 715–72.2.0.CO;2>CrossRefGoogle ScholarPubMed
Doran, P.T., McKay, C.P., Clow, G.D., Dana, G.L., Fountain, A.G., Nylen, T. & Lyons, W.B. 2002. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. Journal of Geophysical Research, 107, 4710.1029/2001JD002045.CrossRefGoogle Scholar
Doran, P.T., McKay, C.P., Fountain, A.G., Nylen, T., McKnight, D.M., Jaros, C. & Barrett, J.E. 2008. Hydrologic response to extreme warm and cold summers in the McMurdo Dry Valleys, East Antarctica. Antarctic Science, 20, 10.1017/S0954102008001272.CrossRefGoogle Scholar
Gilichinsky, D.A., Wilson, G.S., Friedmann, E.I., McKay, C.P., Sletten, R.S., Rivkina, E.M., Vishnivetskaya, T.A., Erokhina, L.G., Ivanushkina, N.E., Kochkina, G.A., Shcherbakova, V.A., Soina, V.S., Spirina, E.V., Vorobyova, E.A., Fyodorov-Davydov, D.G., Hallet, B., Ozerskaya, S.M., Sorokovikov, V.A., Laurinavichyus, K.S., Shatilovich, A.V., Chanton, J.P., Ostroumov, V.E. & Tiedje, J.M. 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology, 7, 275311.CrossRefGoogle ScholarPubMed
Hagedorn, B., Sletten, R.S. & Hallet, B. 2007. Sublimation and ice condensation in hyperarid soils: modeling results using field data from Victoria Valley, Antarctica. Journal of Geophysical Research, 112, 3010.1029/2006JF000580.CrossRefGoogle Scholar
Hindmarsh, R.C.A., Van der Wateren, F.M. & Verbers, A.L.L.M. 1998. Sublimation of ice through sediment in Beacon Valley, Antarctica. Geografiska Annaler - Physical Geography, 80A, 209219.CrossRefGoogle Scholar
Kowalewski, D.E., Marchant, D.R., Levy, J.S. & Head, J.W. III 2006. Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley. Antarctica. Antarctic Science, 18, 421428.CrossRefGoogle Scholar
Marchant, D.R. & Head, J.W. III 2007. Antarctic Dry Valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus, 192, 187222.CrossRefGoogle Scholar
McKay, C.P., Mellon, M.T. & Friedmann, E.I. 1998. Soil temperature and stability of ice-cemented ground in McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 3138.CrossRefGoogle ScholarPubMed
Mellon, M.T. & Jakosky, B.M. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research, 98, 33453364.CrossRefGoogle Scholar
Mellon, M.T., Feldman, W.C. & Prettyman, T.H. 2004. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, 169, 324340.CrossRefGoogle Scholar
Schorghofer, N. 2005. A physical mechanism for long-term survival of ground ice in Beacon Valley, Antarctica. Geophysical Research Letters, 32, 10.1029/2005GL023881.CrossRefGoogle Scholar
Smith, H.D. & McKay, C.P. 2005. Drilling in ancient permafrost on Mars for evidence of a second genesis of life, Planetary and Space Science, 53, 13021308.CrossRefGoogle Scholar
Smith, P.H., Tampari, L., Arvidson, R.E.D., Bass, D.S., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T.J., DeJong, E.M., Fisher, D., Goetz, W., Gunnlaugsson, H.P., Hecht, M., Hipkin, V., Hoffman, J.H., Hviid, S., Keller, H.U., Kounaves, S., Lange, C.F., Lemmon, M.T., Madsen, M.B., Malin, M.C., Markiewicz, W.J., Marshall, J.R., McKay, C.P., Mellon, M.T., Michelangeli, D., Ming, D.W., Morris, R., Renno, N.O., Pike, W.T., Staufer, U., Stoker, C.R., Taylor, P.A., Whiteway, J.A., Young, S. & Zent, A.P. 2008. The Phoenix mission to Mars. Journal of Geophysical Research, 10.1029/2008JE003083.Google Scholar
Sugden, D.E., Marchant, D.R., Potter, N. Jr., Souchez, R.A., Denton, G.H., Swisher, C.C. III & Tison, J.-L. 1995. Preservation of Miocene glacier ice in East Antarctica. Nature, 376, 412414.CrossRefGoogle Scholar