Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T08:04:31.077Z Has data issue: false hasContentIssue false

Thermophilic bacteria present in a sample from Fumarole Bay, Deception Island

Published online by Cambridge University Press:  27 June 2011

Patricio A. Muñoz*
Affiliation:
Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile Doctorado en Biotecnología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
Patricio A. Flores
Affiliation:
Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile Doctorado en Biotecnología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile
Freddy A. Boehmwald
Affiliation:
Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile
Jenny M. Blamey
Affiliation:
Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago, Chile

Abstract

Deception Island, an active stratovolcano located in the South Shetland Islands, Antarctica, provides excellent conditions for the thermophilic bacteria growth because of high ground temperatures in specific areas, such as Fumarole Bay where the temperatures are above the mesophilic range. Denaturing Gradient Gel Electrophoresis (DGGE) was used with the 16S ribosomal gene to analyse cultures of thermophilic bacteria from a soil sample taken from Fumarole Bay. Nine bands were sequenced and analysed from DGGE and they indicated the presence of bacteria from the genera Geobacillus, Bacillus, Brevibacillus, Thermus and uncultured sulphate reducing bacteria. Some of which have been reported in other Antarctic geothermal sites. Geobacillus, Bacillus and Brevibacillus genera were successfully cultivated in an enriched medium. A pure culture of one thermophilic Geobacillus bacterium was obtained closely related to Geobacillus jurassicus.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, R.N., Lebbe, L., Heyrman, J., de Vos, P., Buchanan, J.Logan, N.A. 2005. Brevibacillus levickii sp. nov. and Aneurinibacillus terranovensis sp. nov., two novel thermoacidophiles isolated from geothermal soils of northern Victoria Land, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 55, 10391050.CrossRefGoogle Scholar
Bargagli, R., Skotnicki, M.L., Pepi, M., Mackenzie, A.Agnorelli, C. 2004. New record of moss and thermophilic bacteria species and physico-chemical properties of geothermal soils on the northwest slope of Mt. Melbourne (Antarctica). Polar Biology, 27, 423431.CrossRefGoogle Scholar
Barns, S.M., Fundyga, R.E., Jeffries, M.W.Pace, N.R. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of Sciences of the United States of America, 91, 16091613.CrossRefGoogle Scholar
Casamayor, E., Muyzer, G.Pedrós-Alió, C. 2001. Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA denaturating gradient gel electrophoresis and sequencing. Aquatic Microbial Ecology, 25, 237246.CrossRefGoogle Scholar
Caselli, A., dos Santos Afonso, M.Agusto, M.R. 2004. Gases fumarólicos de la Isla Decepción (Shetland del Sur, Antártida): variaciones químicas y depósitos vinculados a la crisis sísmica de 1999. Revista de la Asociación Geológica Argentina, 59, 291302.Google Scholar
Christner, B., Mosley-Thompson, E., Thompson, L.Reeve, J.N. 2001. Isolation of bacteria and 16S rDNA from Lake Vostok accretion ice. Environmental Microbiology, 3, 570577.CrossRefGoogle ScholarPubMed
Daumas, S., Cord-Ruwish, R.Garcia, J.L. 1988. Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie van Leeuwenhoek Journal of Microbiology, 54, 165178.CrossRefGoogle Scholar
De La Torre, J.R., Goebe, B.M., Friedmann, E.I.Pace, N.R. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 38583867.CrossRefGoogle ScholarPubMed
Dinsdale, A., Halket, G., Coorevits, A., van Landschoot, A., Busse, H., de Vos, P.Logan, N. 2010. Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus. International Journal of Systematic and Evolutionary Microbiology. 10.1099/ijs.0.025445-0.Google ScholarPubMed
Freier, D., Mothershed, C.P.Wiegel, J. 1988. Characterization of Clostridium thermocellum JW-20. Applied Environmental Microbiology, 54, 204211.CrossRefGoogle Scholar
Haouari, O., Fardeau, M.L., Cayol, J.L., Casiot, C., Elbaz-Poulichet, F., Hamdi, M., Joseph, M.Ollivier, B. 2008. Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. International Journal of Systematic Bacteriology, 58, 25292535.Google Scholar
Hudson, J.A.Daniel, R.M. 1988. Enumeration of thermophilic heterotrophs in geothermally heated soils from Mount Erebus, Ross Island, Antarctica. Applied and Environmental Microbiology, 54, 622624.CrossRefGoogle ScholarPubMed
Kublanov, I.V., Perevalova, A.A., Slobodkina, G.B., Lebedinsky, A.V., Bidzhieva, S.K., Kolganova, T.V., Kaliberda, E.N., Rumsh, L.D., Haertle, T.Bonch-Osmolovskaya, E.A. 2009. Biodiversity of thermophilic prokaryontes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Applied and Environmental Microbiology, 75, 286291.CrossRefGoogle ScholarPubMed
Llarch, A., Logan, N.A., Castellí, J., Prieto, M.J.Guinea, J. 1997. Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island, South Shetland archipelago. Microbial Ecology, 34, 5865.CrossRefGoogle ScholarPubMed
Logan, N.A.Allan, R.N. 2007. Aerobic endospore-forming bacteria from Antarctic geotermal soils. In Dion, P. & Nautiyal, C.S., eds. Soil biology: microbiology of extreme soils. Berlin: Springer, 155175.Google Scholar
Logan, N.A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx, M., Murray, B.L., Syme, N., Wynn-Williams, D.D.de Vos, P. 2000. Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 17411753.CrossRefGoogle Scholar
Maugeri, T.L., Lentini, V., Gugliandolo, C., Italiano, F., Cousin, S.Stackebrandt, E. 2009. Bacterial and archaeal populations at two shallow hydrothermal vents off Panarea Island (Eolian Islands, Italy). Extremophiles, 13, 199212.CrossRefGoogle ScholarPubMed
Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 2, 317322.CrossRefGoogle ScholarPubMed
Muyzer, G., de Waal, E.C.Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Applied Environmental Microbiology, 59, 695700.CrossRefGoogle Scholar
Muyzer, G., Brinkhoff, T., Nübel, U., Santegoeds, C., Schäfer, H.Wawer, C. 1998. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In Kowalchuk, G.A., Bruijn, F.J., de Head, I.M., Akkermans, A.D.L. & Elsas, J.D.,eds. Molecular microbial ecology manual. Berlin: Springer, 743770.Google Scholar
Nicolaus, B., Improta, R., Manca, M., Lama, L., Esposito, E.Gambacorta, A. 1998. Alicyclobacilli from an unexplored geothermal soil in Antarctica, Mount Rittmann. Polar Biology, 19, 133141.CrossRefGoogle Scholar
Nicolaus, B., Lama, L., Esposito, E., Belliti, M.R., Improta, R., Panico, A.Gambacorta, A. 2000. Extremophiles in Antarctica. Italian Journal of Zoology, 1, 169174.CrossRefGoogle Scholar
Ortiz, R., Vila, J., Garcia, A., Camacho, A.G., Diez, J.L., Aparicio, A., Soto, R., Viramonte, J.G., Risso, C., Menegatti, N.Petrinovic, I. 1992. Geophysical features of Deception Island. In Yoshida, Y., Kaminuma, K. & Shiraishi, K., eds. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing Company, 443448.Google Scholar
Poli, A., Esposito, E., Lama, L., Orlando, P., Nicolaus, G., de Appolonia, F., Gambacorta, A.Nicolaus, B. 2006. Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Systematic and Applied Microbiology, 29, 300307.CrossRefGoogle Scholar
Reysenbach, A.N., Longnecker, K.Kirshtein, J. 2000. Novel bacterial and Archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Applied and Environmental Microbiology, 66, 37983806.CrossRefGoogle Scholar
Sako, Y.N., Nomura, A., Uchida, Y., Ishida, H., Morii, Y., Koga, T., Hoakii, T.Maruyama, T. 1996. Aeropyrum pernix gen. nov., sp nov, a novel aerobic hyperthermophilic archeon growing at temperatures up to 100°C. International Journal of Systematic Bacteriology, 46, 10701077.CrossRefGoogle Scholar
Saul, D.J., Rodrigo, A.G., Reeves, R.A., Williams, L.C., Borges, K.M., Morgan, H.W.Bergquist, P.L. 1993. Phylogeny of twenty Thermus isolates constructed from 16S rRNA gene sequence data. International Journal of Systematic Bacteriology, 43, 754760.CrossRefGoogle ScholarPubMed
Sing, D.Sing, C.F. 2010. Impact of direct soil exposures from airborne dust and geophagy on human health. International Journal of Environmental Research and Public Health, 7, 12051223.CrossRefGoogle ScholarPubMed
Tamura, K., Dudley, J., Nei, M.Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 15961599.CrossRefGoogle ScholarPubMed
Turner, P., Mamo, G.Karlsson, E.N. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories, 6, 932.CrossRefGoogle ScholarPubMed
Walker, T. 2005. Distribution of oxygen, sulfides and optimum temperature for sulfate reduction in Antarctic marine sediments. Polish Polar Research, 26, 215230.Google Scholar
Xu, D.Côtê, J.C. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology, 53, 695704.CrossRefGoogle ScholarPubMed