Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:34:47.410Z Has data issue: false hasContentIssue false

Three-dimensional use of marine habitats by juvenile emperor penguins Aptenodytes forsteri during post-natal dispersal

Published online by Cambridge University Press:  02 January 2013

Jean-Baptiste Thiebot*
Affiliation:
Centre d'Etudes Biologiques de Chizé, UPR 1934 CNRS, 79360 Villiers-en-bois, France
Amélie Lescroël
Affiliation:
Biodiversité et Gestion des Territoires, Université de Rennes 1 - UMR 7204, Muséum National d'Histoire Naturelle, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
Christophe Barbraud
Affiliation:
Centre d'Etudes Biologiques de Chizé, UPR 1934 CNRS, 79360 Villiers-en-bois, France
Charles-André Bost
Affiliation:
Centre d'Etudes Biologiques de Chizé, UPR 1934 CNRS, 79360 Villiers-en-bois, France

Abstract

The juvenile phase is poorly known in Antarctic seabirds, despite being a critical period for individual survival. To better understand the ecology of young Antarctic seabirds, we surveyed for the first time the three-dimensional habitat use of six juvenile emperor penguins during their post-natal dispersal from Terre Adélie, using bio-telemetric tags. The tags transmitted location and activity data for nearly 100 days on average. One individual was followed during eight months and covered 7000 km, which represents the longest continuous individual survey for the species. Studied individuals first dispersed away from Antarctica, up to 54.7°S and 1250 km north of the pack-ice edge, in the Polar Frontal Zone. This highlighted a much looser association with sea ice and a greater at-sea range compared to previous knowledge on breeding adults. Juvenile penguins then moved southwards close to the extending pack-ice during autumn and winter. Over the survey duration, juveniles showed a contrasting use of marine habitats, with less mobility, less time underwater, and shallower dives (generally not over 50–100 m) in the pack ice, versus greater distances travelled, more time spent underwater, especially deeper than 100 m (up to 250–300 m) in open water. We discuss hypotheses which could explain the northward exodus of juvenile emperor penguins across contrasting habitats.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainley, D.G.Ballard, G. 2012. Non-consumptive factors affecting foraging patterns in Antarctic penguins: a review and synthesis. Polar Biology, 35, 113.CrossRefGoogle Scholar
Ainley, D.G., Fraser, W.R., Smith, W.O., Hopkins, T.L.Torres, J.J. 1991. The structure of upper level pelagic food webs in the Antarctic: effect of phytoplankton distribution. Journal of Marine Systems, 2, 111122.CrossRefGoogle Scholar
Ainley, D.G., Ballard, G., Blight, L.K., Ackley, S., Emslie, S.D., Lescroël, A., Olmastroni, S., Townsend, S.E., Tynan, C.T., Wilson, P.Woehler, E. 2010. Impacts of cetaceans on the structure of Southern Ocean food webs. Marine Mammal Science, 26, 482498.CrossRefGoogle Scholar
Ballance, L.T., Ainley, D.G., Ballard, G.Barton, K. 2009. An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. Journal of Avian Biology, 40, 279288.CrossRefGoogle Scholar
Ballard, G.Ainley, D.G. 2005. Killer whale harassment of Adélie penguins at Ross Island. Antarctic Science, 17, 385386.CrossRefGoogle Scholar
Bannasch, R., Wilson, R.P.Culik, B. 1994. Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. Journal of Experimental Biology, 194, 8396.CrossRefGoogle Scholar
Barbraud, C.Weimerskirch, H. 2001. Emperor penguins and climate change. Nature, 411, 183186.CrossRefGoogle ScholarPubMed
Barbraud, C., Gavrilo, M., Mizin, Y.Weimerskirch, H. 2011. Comparison of emperor penguin declines between Pointe Géologie and Haswell Island over the past 50 years. Antarctic Science, 23, 461468.CrossRefGoogle Scholar
Bost, C.A., Charrassin, J.B., Clerquin, Y., Ropert-Coudert, Y.LeMaho, Y. 2004. Exploitation of distance marginal ice zones by king penguins during winter. Marine Ecology Progress Series, 283, 293297.CrossRefGoogle Scholar
Charrassin, J.B.Bost, C.A. 2001. Utilization of the oceanic habitat by king penguins over the annual cycle. Marine Ecology Progress Series, 221, 285297.CrossRefGoogle Scholar
Cherel, Y.Kooyman, G.L. 1998. Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Marine Biology, 130, 335344.CrossRefGoogle Scholar
Clarke, J., Kerry, K., Fowler, C., Lawless, R., Eberhard, S.Murphy, R. 2003. Post-fledging and winter migration of Adélie penguins Pygoscelis adeliae in the Mawson region of East Antarctica. Marine Ecology Progress Series, 248, 267278.CrossRefGoogle Scholar
Dewitt, H.H., Heemstra, P.C.Gon, O. 1990. Nototheniidae. In Gon, O. & Heemstra, P.C., eds. Fishes of the Southern Ocean. Grahamstown: J.L.B. Smith Institute of Ichthyology, 279331.Google Scholar
Field, I.C., Bradshaw, C.J.A., Burton, H.R., Sumner, M.D.Hindell, M.A. 2005. Resource partitioning through oceanic segregation of foraging juvenile southern elephant seals (Mirounga leonina). Oecologia, 142, 127135.CrossRefGoogle ScholarPubMed
Guilford, T., Freeman, R., Boyle, D., Dean, B., Kirk, H., Phillips, R.Perrins, C. 2011. A dispersive migration in the Atlantic puffin and its implications for migratory navigation. PLoS ONE, 6, e21336.CrossRefGoogle ScholarPubMed
Hunt, G.L.Schneider, D.C. 1987. Scale-dependent processes in the physical and biological environment of marine birds. In Croxall, J.P.,ed. Seabirds: feeding ecology and role in marine ecosystems. Cambridge: Cambridge University Press, 741.Google Scholar
Jenouvrier, S., Barbraud, C., Weimerskirch, H.Caswell, H. 2009. Limitation of population recovery: a stochastic approach to the case of the emperor penguin. Oikos, 118, 12921298.CrossRefGoogle Scholar
Knox, G.A. 2007. Biology of the Southern Ocean, 2nd ed. Boca Raton, FL: CRC Press, 621 pp.Google Scholar
Kooyman, G.L. 2002. Evolutionary and ecological aspects of some Antarctic and sub-Antarctic penguin distributions. Oecologia, 130, 485495.CrossRefGoogle ScholarPubMed
Kooyman, G.L.Ponganis, P.J. 2008. The initial journey of juvenile emperor penguins. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, S37S43.CrossRefGoogle Scholar
Kooyman, G.L., Kooyman, T.G., Horning, M.Kooyman, C.A. 1996. Penguin dispersal after fledging. Nature, 383, 397.CrossRefGoogle Scholar
Kooyman, G.L., Siniff, D.B., Stirling, I.Bengtson, J.L. 2004. Moult habitat, pre- and post-moult diet and post-moult travel of Ross Sea emperor penguins. Marine Ecology Progress Series, 267, 281290.CrossRefGoogle Scholar
Lancraft, T.M., Hopkins, T.L., Torres, J.J.Donnelly, J. 1991. Oceanic micronektonic/macrozooplanktonic community structure and feeding under ice-covered Antarctic waters during the winter (AMERIEZ 1988). Polar Biology, 11, 157167.CrossRefGoogle Scholar
Mougin, J.-L.van Beveren, M. 1979. Structure et dynamique de la population de Manchots empereurs Aptenodytes forsteri de la colonie de l'archipel de Pointe Géologie, Terre Adélie. Comptes Rendus de l'Académie des Sciences de Paris, 289D, 157160.Google Scholar
Offredo, C.Ridoux, V. 1986. The diet of emperor penguins Aptenodytes forsteri in Adélie land, Antarctica. Ibis, 128, 409413.CrossRefGoogle Scholar
Orians, G.H.Pearson, N.E. 1979. On the theory of central place foraging. In Horn, D.J., Mitchell, R.D. & Stairs, G.R., eds. Analysis of ecological systems. Columbus, OH: Ohio State University Press, 157177.Google Scholar
Ponganis, P.J., Starke, L.N., Horning, M.Kooyman, G.L. 1999. Development of diving capacity in emperor penguins. Journal of Experimental Biology, 202, 781786.CrossRefGoogle ScholarPubMed
Ponganis, P.J., van Dam, R.P., Marshall, G., Knower, T.Levenson, D.H. 2000. Subice foraging behavior of emperor penguins. Journal of Experimental Biology, 203, 32753278.CrossRefGoogle ScholarPubMed
Prévost, J. 1961. Ecologie du manchot empereur, Aptenodytes forsteri Gray. Expéditions Polaires Françaises. Publication No. 22. Paris: Hermann, 204 pp.Google Scholar
Pyke, G.H., Pulliam, H.R.Charnov, E.L. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology, 52, 137154.CrossRefGoogle Scholar
R Development Core Team. 2009. R: a language and environment for statistical computing. Vienna: Wirtschafts University, http://www.R-project.org.Google Scholar
Thiebot, J.B., Cherel, Y., Trathan, P.N.Bost, C.A. 2012. Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology, 93, 122130.CrossRefGoogle ScholarPubMed
Thiebot, J.B., Lescroël, A., Pinaud, D., Trathan, P.N.Bost, C.A. 2011. Larger foraging range but similar habitat selection in non-breeding versus breeding sub-Antarctic penguins. Antarctic Science, 23, 117126.CrossRefGoogle Scholar
Trebilco, R., Gales, R., Baker, G.B., Terauds, A.Sumner, M.D. 2008. At-sea movement of Macquarie Island giant petrels: relationships with marine protected areas and regional fisheries management organizations. Biological Conservation, 141, 29422958.CrossRefGoogle Scholar
Weimerskirch, H. 2007. Are seabirds foraging for unpredictable resources? Deep-Sea Research Part II, 54, 211223.CrossRefGoogle Scholar
Weimerskirch, H., Akesson, S.Pinaud, D. 2006. Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species. Journal of Avian Biology, 37, 2328.CrossRefGoogle Scholar
Wienecke, B., Raymond, B.Robertson, G. 2010. Maiden journey of fledgling emperor penguins from the Mawson Coast, East Antarctica. Marine Ecology Progress Series, 410, 269282.CrossRefGoogle Scholar
Williams, T.D. 1995. The penguins. Oxford, Oxford University Press, 295 pp.Google Scholar
Zimmer, I., Wilson, R.P., Beaulieu, M., Ancel, A.Plötz, J. 2008. Seeing the light: depth and time restrictions in the foraging capacity of emperor penguins at Pointe Géologie, Antarctica. Aquatic Biology, 3, 217226.CrossRefGoogle Scholar