Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T20:02:12.620Z Has data issue: false hasContentIssue false

Viral antibodies in south polar skuas around Davis Station, Antarctica

Published online by Cambridge University Press:  16 May 2008

Gary D. Miller*
Affiliation:
Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, University of Western Australia, Crawley, WA 6009, Australia
Joanne M. Watts
Affiliation:
Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, University of Western Australia, Crawley, WA 6009, Australia
Geoffrey R. Shellam
Affiliation:
Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, University of Western Australia, Crawley, WA 6009, Australia
*
*Corresponding author: Discipline of Microbiology and Immunology, School of Biomedical, Biomolecular and Chemical Sciences, M502, 35 Stirling Highway, University of Western Australia, Crawley, WA 6009, Australiagdmiller@iinet.net.au

Abstract

We surveyed south polar skuas (Catharacta maccormicki Saunders) in Antarctica for antibodies to a series of viral agents using blood serum and cloacal swabs from 124 adult skuas. There were no ticks on the subjects and we were unable to isolate virus from any individual. Skuas, however, were seropositive to some avian viruses: 16.9% (20/118) had antibodies to infectious bursal disease virus and 10.5% (11/105) were seropositive for Newcastle disease. We found 1.0% (1/98) had antibodies to avian influenza, no evidence of egg drop syndrome (0/48), but 27.8% (10/36) had antibodies to flaviviruses. Clearly south polar skuas encounter a variety of pathogens either in Antarctica or during their migration in the non-breeding season. There was no evidence of disease in skuas, but the presence of antibodies to pathogens indicates the need to continue to search for the origins of these immunological challenges.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D.J. 1996. Newcastle Disease. In Blancou, J. & Truszczynski, M., eds. Manual of standards of diagnostic tests and vaccines. Paris: Office of International des Epizooites, 125134.Google Scholar
Alexander, D.J. 2000. Newcastle disease in ostriches (Struthio camelus) - a review. Avian Pathology, 29, 95100.CrossRefGoogle ScholarPubMed
Austin, F.J. & Webster, R.G. 1993. Evidence of ortho-and paramyxoviruses in fauna from Antarctica. Journal of Wildlife Disease, 29, 568571.CrossRefGoogle ScholarPubMed
Baumeister, E., Leotta, G., Pantoriero, A., Campos, A., Montalti, D., Vigo, G., Pecoraro, M. & Savy, V. 2004. Serological evidences of influenza A virus infection in Antarctica migratory birds. International Congress Series, 1263, 737740.CrossRefGoogle Scholar
Blitvich, B.J., Marlenee, N.L., Hall, R.A., Calisher, C.H., Bowen, R.A., Roehrig, J.T., Komar, N., Langevin, S.A. & Beaty, B.J. 2003. Epitope blocking enzyme-linked immunosorbent assays for the detection of serum antibodies to West Nile Virus in multiple avian species. Journal of Clinical Microbiology, 41, 10411047.CrossRefGoogle ScholarPubMed
Broman, T., Bergstron, S., On, S.L.W., Palmgren, H., McCafferty, D.J., Sellin, M. & Olsen, B. 2000. Isolation and characterization of Campylobacter jejuni subsp.jejuni from macaroni penguins (Eudyptes chrysolophus) in the subantarctic region. Applied Environmental Microbiology, 66, 449452.CrossRefGoogle ScholarPubMed
Clarke, J.R. & Kerry, K.R. 1993. Diseases and parasites of penguins. Korean Journal of Polar Research, 4, 7996.Google Scholar
Clarke, J.R. & Kerry, K.R. 2000. Diseases and parasites of penguins. Penguin Conservation, 13, 524.Google Scholar
Clarke, L. & Hall, J. 2006. Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. Ornithological Monographs, 60, 329.CrossRefGoogle Scholar
Corner, L.A. & Bagust, T.J., eds. 1993. Australian standard diagnostic techniques for animal diseases. Melbourne: Standing Committee on Agriculture and resource Management, 355 pp.Google Scholar
Croxall, J.P., Trathan, P.N. & Murphy, E.J. 2002. Environmental change and Antarctic seabird populations. Science, 297, 15101514.CrossRefGoogle ScholarPubMed
Curry, C.H., McCarthy, J.S., Darragh, H.M., Wake, R.A., Todhunter, R. & Terris, J. 2002. Could tourist boots act as vectors for transmission of infectious agents in Antarctica? Journal of Travel Medicine, 9, 190193.CrossRefGoogle Scholar
de Lisle, G.W., Stanislawek, W.L. & Moors, P.J. 1990. Pasteurella multocida infections in rockhopper penguins (Eudyptes chrysocome) from Campbell Island, New Zealand. Journal of Wildlife Diseases, 26, 283285.CrossRefGoogle ScholarPubMed
Enzenbacher, D.J. 1994. Antarctic tourism: an overview of 1992/93 season activity, recent developments and emerging issues. Polar Record, 30, 105116.CrossRefGoogle Scholar
Frenot, Y., Chown, S.L., Whinam, J., Selkirk, P.M., Convey, P., Skotnicki, M. & Bergstrom, D.M. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews, 80, 4572.CrossRefGoogle ScholarPubMed
Furness, R.W. 1987. The skuas. Carlton: Poyser, 363 pp.Google Scholar
Gardner, H., Kerry, K., Riddle, M., Brouwer, S. & Gleeson, L. 1997. Poultry virus infection in Antarctic penguins. Nature, 387, 285.CrossRefGoogle ScholarPubMed
Gauthier-Clerc, M., Eterradossi, N., Toquin, D., Guittet, M., Kuntz, G. & Le Maho, Y. 2002. Serological survey of the king penguin, Aptenodytes patagonicus, in Crozet Archipelago for antibodies to infectious bursal disease, influenza A and Newcastle disease viruses. Polar Biology, 25, 316319.CrossRefGoogle Scholar
Gauthier-Clerc, M., Jaulhac, B., Frenot, Y., Bachelard, C., Monteil, H., Le Maho, Y. & Handrich, Y. 1999. Prevalence of Borrelia burgdorferi (the Lyme disease agent) antibodies in king penguin Aptenodytes patagonicus in Crozet Archipelago. Polar Biology, 22, 141143.CrossRefGoogle Scholar
Giambrone, J.J. 1980. Microculture neutralisation tests for serodiagnosis of three avian viral infections. Avian Diseases, 24, 284287.CrossRefGoogle Scholar
Hall, R.A., Broom, A.K., Harnett, A.C., Howard, M.J. & Mackenzie, J.S. 1995. Immunodominant epitopes on the NS1 protein of MVE and KUN viruses serve as the targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum. Journal of Virological Methods, 51, 201210.CrossRefGoogle ScholarPubMed
Hansen, W. 1999. Avian influenza. In Friend, M. & Franson, J.C., eds. Field manual of wildlife diseases: general field procedures and diseases of birds. Madison, WI: USGS Biological Resources Division, 181184.Google Scholar
Hollmen, T., Franson, J.C., Docherty, D.E., Kilpi, M., Hario, M., Creekmore, L.H. & Petersen, M.R. 2000. Infectious bursal disease virus antibodies in Eider ducks and Herring gulls. Condor, 102, 688691.CrossRefGoogle Scholar
Kaleta, E.F. & Baldauf, C. 1988. Newcastle disease in freeliving and pet birds. In Alexander, D.J., ed. Newcastle disease. Boston: Kluwer, 197246.CrossRefGoogle Scholar
Karesh, W.B., Uhart, M.M., Frere, E., Gandini, P., Braselton, E., Puche, H. & Cook, R.A. 1999. Health evaluation of free-ranging rockhopper penguins (Eudyptes chrysocomes) in Argentina. Journal of Zoo Wildlife Medicine, 30, 2531.Google ScholarPubMed
Kerry, K.R., Gardner, H.G. & Clarke, J.R. 1996. Penguin deaths: diet or disease? Microbiology Australia, 17, 16.Google Scholar
Kovats, R.S., Campbell-Lendrum, D.H., McMichael, A.J., Woodward, A. & Cox, J.S.H. 2001. Early effects of climate change: do they include changes in vector-borne disease? Philosophical Transactions of the Royal Society of London, B356, 10571068.CrossRefGoogle Scholar
Leong, J.C., Brown, D., Dobos, P., Kibenge, F.S.B., Ludert, J.E., Mulleer, E. & Nicholson, B. 2000. Birnaviridae. In van Regenmortel, H.V., et al. , eds. Virus taxonomy: classification and nomenclature of viruses. New York: Academic Press, 525537.Google Scholar
Leotta, G.A., Chinen, I., Vigo, G.B., Pecoraro, M. & Rivas, M. 2006. Outbreaks of avian cholera in Hope Bay, Antarctica. Journal of Wildlife Diseases, 42, 259270.CrossRefGoogle ScholarPubMed
Leotta, G.A., Rivas, M., Chinen, I., Vigo, G.B., Moredo, F.A., Coria, N.R. & Wolcott, M.J. 2003. Avian cholera in a southern giant petrel (Macronectes giganteus) from Antarctica. Journal of Wildlife Diseases, 39, 732735.CrossRefGoogle Scholar
MacDonald, J.W. & Conroy, J.W.H. 1971. Virus disease resembling puffinosis in the gentoo penguin Pygoscelis papua on Signy Island, South Orkney Islands. British Antarctic Survey Bulletin, No. 26, 8083.Google Scholar
Merck, . 2006. Merck electronic veterinary manual. http://www.merckvetmanual.com.Google Scholar
Montalti, D., Coria, N.R. & Curtosi, A. 1996. Unusual deaths of subantarctic skuas Catharacta antarctica at Hope Bay, Antarctica. Marine Ornithology, 24, 3940.Google Scholar
Moore, B.W. & Cameron, A.S. 1969. Chlamydia antibodies in Antarctic fauna. Avian Diseases, 8, 681684.CrossRefGoogle Scholar
Morgan, I.R. 1988. Viruses in Macquarie Island birds. Papers and Proceedings of the Royal Society of New Zealand, 122(1), 193198.Google Scholar
Morgan, I.R. & Westbury, H.A. 1981. Virological studies of Adélie penguins (Pygoscelis adeliae) in Antarctica. Avian Diseases, 25, 10191027.CrossRefGoogle ScholarPubMed
Morgan, I.R. & Westbury, H.A. 1988. Studies of viruses in penguins in the Vestfold Hills, Antarctica. Hydrobiologica, 165, 263269.CrossRefGoogle Scholar
Morgan, I.R., Westbury, H.A. & Campbell, J. 1985. Viral infections of little blue penguins (Eudyptula minor) along the southern coast of Australia. Journal of Wildlife Diseases, 21(3), 193198.CrossRefGoogle ScholarPubMed
Morgan, I.R., Westbury, H.A., Caple, I.W. & Campbell, J. 1981. A survey of virus infection in sub-Antarctica penguins on Macquarie Island, southern ocean. Australian Veterinary Journal, 57, 333335.CrossRefGoogle Scholar
Naveen, R., Forrest, S.C., Dagit, R.G., Blight, L.K., Trivelpiece, W.Z. & Trivelpiece, S.G. 2001. Zodiac landings by tourist ships in the Antarctic Peninsula region, 1989–1999. Polar Record, 37, 121132.CrossRefGoogle Scholar
Nawathe, D.R., Onunkwo, O. & Smith, I.M. 1978. Serological evidence of infection with infection with the virus of infectious bursal disease in wild and domestic birds in Nigeria. Veterinary Record, 102, 444.CrossRefGoogle ScholarPubMed
Oelke, H. & Steiniger, F. 1973. Salmonella in Adélie penguins (Pygoscelis adeliae) and south polar skuas (Catharacta maccormicki) on Ross Island Antarctica. Avian Diseases, 17, 568573.CrossRefGoogle ScholarPubMed
Ogawa, M., Wakuda, T., Yamaguchi, T., Murata, K., Setiyono, A., Fukushi, H. & Hirai, K. 1998. Seroprevalence of infectious bursal disease virus in free-living wild birds in Japan. Journal of Veterinary Medical Science, 60, 12771279.CrossRefGoogle ScholarPubMed
Olsen, B., Bergstrom, S., McCafferty, D.J., Sellin, M. & Wistrom, J. 1996. Salmonella enteritidis in Antarctica: zoonosis in man or humanosis in penguins? Lancet, 348, 13191320.CrossRefGoogle ScholarPubMed
Olsen, B., Duffy, D.C., Jaenson, T.G.T., Gylfe, A., Bonnedahl, J. & Bergstrom, S. 1995. Transhemispheric exchange of Lyme disease spirochetes by seabirds. Journal of Clinical Microbiology, 33, 32703274.CrossRefGoogle ScholarPubMed
Parmelee, D.F., Maxson, S.J. & Bernstein, N.P. 1979. Fowl cholera outbreak among brown skuas at Palmer Station. Antarctic Journal of the United States, 14 (5), 168169.Google Scholar
Selleck, P. 2002. Influenza A virus: a competitive ELISA for the detection of antibodies to avian influenza virus in various sera. Australian Animal Health Laboratory Disease Diagnostic Project, East Melbourne: CSIRO, 1–17.Google Scholar
Schaefer, P.W. & Strandtmann, R.W. 1971. Notes on incidence and niche preference of Mallophaga and Analgoidea ectoparasitic on south polar skua (Catharacta maccormicki) on Ross Island, Antarctica. Pacific Insects Monograph, 25, 1516.Google Scholar
Sharma, J.M., Kim, I.-J., Rautenschlein, S. & Yeh, H.-Y. 2000. Infectious bursal disease virus of chickens: pathogenesis and immunosuppression. Developmental and Comparative Immunology, 24, 223235.CrossRefGoogle ScholarPubMed
Sieburth, J. 1959. Gastrointestinal microflora of Antarctic birds. Journal of Bacteriology, 77, 521531.CrossRefGoogle ScholarPubMed
Soucek, Z. & Mushin, R. 1970. Gastrointestinal bacteria of certain Antarctic birds and mammals. Applied Microbiology, 20, 561566.CrossRefGoogle ScholarPubMed
Spellerberg, I.F. 1971. Mallophaga on the south polar skua (Catharacta skua maccormicki). Pacific Insects Monograph, 25, 1920.Google Scholar
van den Berg, T.P. 2000. Acute infectious bursal disease in poultry: a review. Avian Pathology, 29, 175194.CrossRefGoogle Scholar
Weimerskirch, H. 2004. Diseases threaten Southern Ocean albatrosses. Polar Biology, 27, 374379.CrossRefGoogle Scholar
Westbury, H.A. & Fahey, K.J. 1993. Infectious bursal disease. Virology and serology. In Corner, L.A. & Bagust, T.J., eds. Australian Standard Diagnostic Techniques for Animal Diseases. Melbourne: Standing Committee on Agriculture and Resource Management, 450 pp.Google Scholar
Wilcox, G.E., Flower, R.L.P., Baxendale, W. & Mackenzie, J.S. 1983. Serological survey of wild birds in Australia for the prevalence of antibodies to egg drop syndrome 176 (EDS-76) and infectious bursal disease viruses. Avian Pathology, 12, 135139.CrossRefGoogle Scholar