Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T19:34:10.927Z Has data issue: false hasContentIssue false

Yeasts from the Maritime Antarctic: tools for industry and bioremediation

Published online by Cambridge University Press:  20 October 2021

Brenda Bezus
Affiliation:
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP; CCT-La Plata, CONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina
Gabriela Garmendia
Affiliation:
Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo (11800), Uruguay
Silvana Vero
Affiliation:
Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo (11800), Uruguay
Sebastián Cavalitto
Affiliation:
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP; CCT-La Plata, CONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina
Ivana Alejandra Cavello*
Affiliation:
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP; CCT-La Plata, CONICET), Calle 47 y 115, B1900ASH, La Plata, Provincia de Buenos Aires, Argentina

Abstract

We isolated 32 yeasts from King George Island, which we then identified and characterized. Twenty-six belonged to Basidiomycota among the genera Naganishia, Holtermaniella, Vishniacozyma, Phenoliferia, Mrakia and Cystobasidium, and only six were Ascomycota of the genera Metschnikowia and Debaryomyces. Thirteen were psychrophiles, while 19 were psychrotolerant. Certain isolates exhibited a high tolerance to NaCl (3.5 M), while most tolerated Ni2+, Zn2+ and Li+. Cu2+ and Cd2+, however, inhibited the growth of most of the isolates. We assessed a bioprospecting of extracellular enzymes and their ability to biodegrade or bioaccumulate textile dyes. β-Glucosidases (59%) and esterases (53%) were the main extracellular enzymes detected. A minor proportion of the yeasts produced pectinases and xylanases; only psychrophiles produced proteases. Vishniacozyma, Naganishia, Phenoliferia and Mrakia were the richest genera in terms of enzyme production. Greater than 70% of the isolates decolourized solid medium supplemented with various dyes at 4°C and 20°C. Isolates belonging to the genera Vishniacozyma, Cystobasidium, Mrakia and Phenoliferia seem to have potential for textile dye bio-decolourization. The results demonstrated that yeasts collected from the Maritime Antarctic are a potential source of new enzymes of biotechnological interest, and that certain isolates could potentially be considered in the design of textile wastewater decolourizations.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adapa, V., Ramya, L.N., Pulicherla, K.K. & Rao, K.R.S.S. 2014. Cold active pectinases: advancing the food industry to the next generation. Applied Biochemistry and Biotechnology, 172, 10.1007/s12010-013-0685-1.CrossRefGoogle Scholar
Amoozegar, M.A., Mehrshad, M. & Akhoondi, H. 2015. Application of extremophilic microorganisms in decolorization and biodegradation of textile wastewater. In Singh, S., ed. Microbial degradation of synthetic dyes in wastewaters. Environmental science and engineering. Cham: Springer, 267295.CrossRefGoogle Scholar
Białkowska, A. & Turkiewicz, M. 2014. Miscellaneous cold-active yeast enzymes of industrial importance. In Buzzini, P. & Margesin, R., eds. Cold-adapted yeasts. Berlin: Springer, 377396.CrossRefGoogle Scholar
Brandão, L.R., Libkind, D., Vaz, A.B.M., Espírito Santo, L.C., Moliné, M., de García, V., et al. 2011. Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiology Ecology, 76, 10.1111/j.1574-6941.2010.01030.x.CrossRefGoogle ScholarPubMed
Carrasco, M., Villarreal, P., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. 2016. Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiology, 16, 10.1186/s12866-016-0640-8.CrossRefGoogle ScholarPubMed
Cavello, I.A., Bezus, B., Martinez, A., Garmendia, G., Vero, S. & Cavalitto, S. 2019. Yeasts from Tierra del Fuego Province (Argentina): biodiversity, characterization and bioprospection of hydrolytic enzymes. Geomicrobiology Journal, 36, 10.1080/01490451.2019.1641769.CrossRefGoogle Scholar
Collins, T. & Margesin, R. 2019. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Applied Microbiology and Biotechnology, 103, 10.1007/s00253-019-09659-5.CrossRefGoogle ScholarPubMed
De García, V., Brizzio, S., Libkind, D., Buzzini, P. & van Broock, M. 2007. Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiology Ecology, 59, 10.1111/j.1574-6941.2006.00239.x.Google ScholarPubMed
de Ovalle, S., Cavello, I., Brena, B.M., Cavalitto, S. & González-Pombo, P. 2018. Production and characterization of a β-glucosidase from Issatchenkia terricola and its use for hydrolysis of aromatic precursors in cabernet sauvignon wine. Food Science and Technology, 87, 10.1016/j.lwt.2017.09.026.Google Scholar
Fell, J.W. 2011. Mrakia Y. Yamada & Komagata (1987). In Kurtzman, C., Fell, J. & Boekhout, T., eds. The yeasts (5th ed.). London: Elsevier, 1503–1510.Google Scholar
Fernández, P.M., Martorell, M.M., Blaser, M.G., Ruberto, L.A.M., de Figueroa, L.I.C. & Mac Cormack, W.P. 2017. Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles, 21, 10.1007/s00792-017-0915-5.CrossRefGoogle ScholarPubMed
Francelino, M.R., Schaefer, C.E.G.R., Simas, F.N.B., Filho, E.I.F., de Souza, J.J.L.L. & da Costa, L.M. 2011. Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena, 85, 10.1016/j.catena.2010.12.007.CrossRefGoogle Scholar
Gomes, J., Gomes, I. & Steiner, W. 2000. Thermolabile xylanase of the Antarctic yeast Cryptococcus adeliae: production and properties. Extremophiles, 4, 10.1007/s007920070024.CrossRefGoogle ScholarPubMed
Gonçalves, V.N., Vitoreli, G.A., de Menezes, G.C.A., Mendes, C.R.B., Secchi, E.R., Rosa, C.A., et al. 2017. Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the northern Antarctica Peninsula. Extremophiles, 21, 10.1007/s00792-017-0959-6.CrossRefGoogle ScholarPubMed
Hammer, O., Harper, D. & Ryan, P. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 19.Google Scholar
Kaushik, P. & Malik, A. 2009. Fungal dye decolourization: recent advances and future potential. Environment International, 35, 10.1016/j.envint.2008.05.010.CrossRefGoogle ScholarPubMed
Kurtzman, C.P. 2014. Use of gene sequence analyses and genome comparisons for yeast systematics. International Journal of Systematic and Evolutionary Microbiology, 64, 10.1099/ijs.0.054197-0.CrossRefGoogle ScholarPubMed
Lo Giudice, A. & Fani, R. 2015. Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): linking microbial ecology to biotechnology. Hydrobiologia, 761, 10.1007/s10750-015-2497-5.CrossRefGoogle Scholar
Margesin, R., Fauster, V. & Fonteyne, P.A. 2005. Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Letters in Applied Microbiology, 40, 10.1111/j.1472-765X.2005.01704.x.CrossRefGoogle ScholarPubMed
Martinez, A., Cavello, I., Garmendia, G., Rufo, C., Cavalitto, S. & Vero, S. 2016. Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles, 20, 10.1007/s00792-016-0865-3.CrossRefGoogle ScholarPubMed
Martorell, M.M., Pajot, H.F. & de Figueroa, L.I.C. 2012. Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria. International Biodeterioration and Biodegradation, 66, 10.1016/j.ibiod.2011.10.005.Google Scholar
Martorell, M.M., Ruberto, L.A.M., Fernández, P.M., de Figueroa, L.I.C. & Mac Cormack, W.P. 2017. Bioprospection of cold-adapted yeasts with biotechnological potential from Antarctica. Journal of Basic Microbiology, 57, http://doi.org/10.1002/jobm.201700021.CrossRefGoogle ScholarPubMed
Martorell, M.M., Ruberto, L.A.M., Fernández, P.M., De Figueroa, L.I.C. & Mac Cormack, W.P. 2019. Biodiversity and enzymes bioprospection of Antarctic filamentous fungi. Antarctic Science, 31, 10.1017/S0954102018000421.CrossRefGoogle Scholar
Mestre, M.C., Fontenla, S. & Rosa, C.A. 2014. Ecology of cultivable yeasts in pristine forests in northern Patagonia (Argentina) influenced by different environmental factors. Canadian Journal of Microbiology, 60, 10.1139/cjm-2013-0897.CrossRefGoogle ScholarPubMed
Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T. & Tomizuka, N. 2004. Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. Letters in Applied Microbiology, 38, 10.1111/j.1472-765X.2004.01503.x.CrossRefGoogle ScholarPubMed
Pelissari, A.L., Filho, A.F., Ebling, A.A., Sanquetta, C.R., Cysneiros, V.C. & Corte, A.P.D. 2018. Spatial variability of tree species diversity in a mixed tropical forest in Southern Brazil. Anais da Academia Brasileira de Ciências, 90, 10.1590/0001-3765201820170826.CrossRefGoogle Scholar
Raspor, P. & Zupan, J. 2006. Yeasts in extreme environments. In Péter, G. & Rosa, C., eds. Biodiversity and ecophysiology of yeasts. Berlin: Springer, 371417.CrossRefGoogle Scholar
Robinson, C.H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151, 10.1046/j.1469-8137.2001.00177.x.CrossRefGoogle Scholar
Rovati, J.I., Pajot, H.F., Ruberto, L., Mac Cormack, W. & Figueroa, L.I.C. 2013. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast, 30, 10.1002/yea.2982.CrossRefGoogle Scholar
Russo, G., Libkind, D., Giraudo, M.R. & Delgado, O.D. 2016. Heavy metal capture by autochthonous yeasts from a volcanic influenced environment of Patagonia. Journal of Basic Microbiology, 56, 10.1002/jobm.201600048.CrossRefGoogle Scholar
Scorzetti, G., Fell, J. W., Fonseca, A. & Statzell-Tallman, A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research, 2, 10.1111/j.1567-1364.2002.tb00117.x.CrossRefGoogle ScholarPubMed
Scorzetti, G., Petrescu, I., Yarrow, D. & Fell, J. 2000. Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek, 77, 10.1023/A:1002124504936.CrossRefGoogle ScholarPubMed
Shah, J.A. & Pandit, A.K. 2013. Application of diversity indices to crustacean community of Wular Lake, Kashmir Himalaya. International Journal of Biodiversity and Conservation, 5, 10.5897/IJBC2013.0567.Google Scholar
Shivaji, S. & Prasad, G.S. 2009. Antarctic Yeasts: biodiversity and potential applications. In Satyanarayana, T. & Kunze, G., eds. Yeast biotechnology: diversity and applications. Dordrecht: Springer, 318.CrossRefGoogle Scholar
Solís, M., Solís, A., Pérez, H.I., Manjarrez, N. & Flores, M. 2012. Microbial decolouration of azo dyes: a review. Process Biochemistry, 47, 10.1016/j.procbio.2012.08.014.CrossRefGoogle Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 10.1093/molbev/mst197.CrossRefGoogle ScholarPubMed
Thomas-Hall, S.R., Turchetti, B., Buzzini, P., Branda, E., Boekhout, T., Theelen, B., et al. 2010. Cold-adapted yeasts from Antarctica and the Italian Alps - description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles, 14, 10.1007/s00792-009-0286-7.CrossRefGoogle ScholarPubMed
Tsuji, M., Tanabe, Y., Vincent, W.F. & Uchida, M. 2018. Mrakia arctica sp. nov., a new psychrophilic yeast isolated from an ice island in the Canadian High Arctic. Mycoscience, 59, 10.1016/j.myc.2017.08.006.Google Scholar
Tsuji, M., Yokota, Y., Kudoh, S. & Hoshino, T. 2015. Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology, 70, 10.1016/j.cryobiol.2015.04.002.CrossRefGoogle ScholarPubMed
Turchetti, B., Sannino, C., Mezzasoma, A., Zucconi, L., Onofri, S. & Buzzini, P. 2020. Mrakia stelviica sp. nov. and Mrakia montana sp. nov., two novel basidiomycetous yeast species isolated from cold environments. International Journal of Systematic and Evolutionary Microbiology, 70, 10.1099/ijsem.0.004336.CrossRefGoogle ScholarPubMed
Vaz, A.B.M., Rosa, L.H., Vieira, M.L.A., de Garcia, V., Brandão, L.R., Teixeira, L.C.R.S., et al. 2011. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian Journal of Microbiology, 42, 10.1590/S1517-83822011000300012.CrossRefGoogle ScholarPubMed
Vero, S., Garmendia, G., Martinez Silveira, A., Cavello, I. & Wisniewski, M. 2019. Yeast activities involved in carbon and nitrogen cycles in Antarctica. In Castro-Sowinski, S., ed. The ecological role of microorganisms in the Antarctic environment. Cham: Springer Nature Switzerland AG, 4564.CrossRefGoogle Scholar
Vishniac, H.S. 2006. Yeast biodiversity in the Antarctic. In Péter, G. & Rosa, C., eds. Biodiversity and ecophysiology of yeasts. Berlin: Springer, 419440.CrossRefGoogle Scholar
Supplementary material: PDF

Bezus et al. supplementary material

Bezus et al. supplementary material

Download Bezus et al. supplementary material(PDF)
PDF 455.2 KB