Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T07:07:44.823Z Has data issue: false hasContentIssue false

Beyond lifetime averages: tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons

Published online by Cambridge University Press:  02 January 2015

Judith Sealy
Affiliation:
Department of Archaeology, University of Cape Town, Private Bag, Rondebosch 7700, South Africa
Richard Armstrong
Affiliation:
Research School of Earth Sciences, Australian National University, Canberra 0200 ACT, Australia
Carmel Schrire
Affiliation:
Department of Anthropology, Douglass College, Rutgers University, New Brunswick NJ 08903, USA

Extract

Stable-isotopic analyses of human bone, now an established aid to dietary reconstruction in archaeology, represent the diet as averaged over many years. Separate analysis of different skeletal components enables changes in diet and place of residence to be tracked, giving a fuller life-history for long-dead individuals.

Type
Papers
Copyright
Copyright © Antiquity Publications Ltd. 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, G. 1993. The Grand Parade, Cape Town: archaeological excavations of the seventeenth century Fort de Goede Hoop, South African Archaeological Bulletin 48: 315.CrossRefGoogle Scholar
Allsopp, H.L. & Kolbe, P. 1965. Isotopic age determinations on the Cape Granite and intruded Malmesbury sediments, Cape Peninsula, South Africa, Geochimica et Cosmochimica Acta 29: 1115–30.CrossRefGoogle Scholar
Ambrose, S.H. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis, Journal of Archaeological Science 17: 431–51.CrossRefGoogle Scholar
Ambrose, S.H. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs, Journal of Archaeological Science 18: 293317.CrossRefGoogle Scholar
Ambrose, S.H. & Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, in Lambert, J.B. & Grupe, G. (ed.), Prehistoric human bone: archaeology at the molecular level: 137. Berlin: Springer – Verlag.Google Scholar
Chisholm, B.S. Nelson, D.E. & Schwarcz, H.P. 1982. Stable carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets, Science 216: 1131–2.CrossRefGoogle ScholarPubMed
Deniro, M.J. & Schoeninger, M.J. 1983. Stable carbon and nitrogen isotope ratios of bone collagen: variations within individuals, between sexes, and within populations raised on monotonous diets, Journal of Archaeological Science 10: 199203.CrossRefGoogle Scholar
Depaolo, D.J. & Ingram, B.L. 1985. High resolution stratigraphy with strontium isotopes, Science 227: 938–41.CrossRefGoogle ScholarPubMed
Ericson, J.E. 1985. Strontium isotope characterization in the study of prehistoric human ecology, Journal of Human Evolution 14: 503–14.CrossRefGoogle Scholar
Heaton, T.H.E. Vogel, J.C. Von La Chevallerie, G. & Collett, G. 1986. Climatic influence on the isotopic composition of bone nitrogen, Nature 322: 823–4.CrossRefGoogle Scholar
Hillson, S. 1986. Teeth, Cambridge: Cambridge University Press.Google ScholarPubMed
Hobson, K.A. & Collier, S. 1984. Marine and terrestrial protein in Australian aboriginal diets, Current Anthropology 25: 238–40.CrossRefGoogle Scholar
Hobson, K.A. & Schwarcz, H.P. 1986. The variation in ∂13C values in bone collagen for two wild herbivore populations: implications for palaeodiet studies, Journal of Archaeological Science 13: 101–6.CrossRefGoogle Scholar
Katzenberg, M.A. 1991. Analysis of stable isotopes of carbon and nitrogen, in Pfeiffer, S. & Williamson, R.F. (ed.), Snake Hill: an investigation of a military cemetery from the War of 1812: 247–55. Toronto: Dundurn Press.Google Scholar
Katzenberg, M.A. 1992. Advances in stable isotope analysis of prehistoric bones, in Saunders, S.R. & Katzenberg, M.A. (ed.), Skeletal biology of past peoples: research methods: 105–19. New York (NY): Wiley–Liss.Google Scholar
Katzenberg, M.A. & Kelley, J.H. 1991. Stable isotope analysis of prehistoric bone from the Sierra Blanca region of New Mexico, in Beckett, P.H. (ed.), Mogollon V: proceedings of the 1988 Mogollon Conference, Las Cruces, New Mexico: 207–19. Las Cruces (NM): COAS Publishing & Research.Google Scholar
Keegan, W.F. & Deniro, M.J. 1988. Stable carbon and nitrogen isotope ratios of bone collagen used to study coral-reef and terrestrial components of prehistoric Bahamian diet, American Antiquity 53: 320–36.CrossRefGoogle Scholar
Lavelle, M. & Armstrong, R.A. 1993. Strontium isotope ratios in modern biogenic and chemical marine precipitates from southern Africa, South African Journal of Science 89: 533–6.Google Scholar
LeGeros, R.Z. 1983. Ultrastructural properties of human enamel apatite, in Lazzari, E. (ed.), Handbook of experimental aspects of oral biochemistry: 159–79. Boca Raton (FL): CRC Press.Google Scholar
Lovell, N.C., Nelson, D.E. & Schwarcz, H.P. 1986. Carbon isotope ratios in palaeodiet: lack of age or sex effect, Archaeometry 28: 51–5.CrossRefGoogle Scholar
Libby, W.F. Berger, R. Mead, J.F. Alexander, G.V. & Ross, J.F. 1964. Replacement rates for human tissue from atmospheric radiocarbon, Science 146: 1170–72.CrossRefGoogle ScholarPubMed
Markell, A.B. 1993. Building on the past: the architecture and archaeology of Vergelegen, South African Archaeological Society Goodwin Series 7: 7183.Google Scholar
Schoeninger, M.J. 1989a. Reconstructing prehistoric human diet, in Price, T.D. (ed.), The chemistry of prehistoric human bone: 3867. Cambridge: Cambridge University Press.Google Scholar
Schoeninger, M.J. 1989b. Reconstructing prehistoric human diet, Homo 39: 7899.Google Scholar
Schoeninger, M.J. & Deniro, M.J. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals, Geochimica et Cosmochimica Acta 48: 625–39.CrossRefGoogle Scholar
Schoeninger, M.J. Deniro, M.J. & Tauber, H. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet, Science 220: 1381–3.CrossRefGoogle ScholarPubMed
Schrire, C. 1988. The historical archaeology of the impact of colonialism in 17th-century South Africa, Antiquity 62: 214–25.CrossRefGoogle Scholar
Schrire, C. 1995. Digging through darkness. Charlottesville (VA): University of Virginia Press.Google Scholar
Schrire, C. Deetz, J. Lubinsky, D. & Poggenpoel, C. 1990. The chronology of Oudepost I, Cape, as inferred from an analysis of clay pipes, Journal of Archaeological Science 17: 269300.CrossRefGoogle Scholar
Schwarcz, H.P. Gibbs, L. & Knyf, M. 1991. Oxygen isotopic analysis as an indicator of place of origin, in Pfeiffer, S. & Williamson, R.F. (ed.), Snake Hill: an investigation of a military cemetery from the War of 1812: 263–8. Toronto: Dundurn Press.Google Scholar
Schwarcz, H.P. & Schoeninger, M.J. 1991. Stable isotope analyses in human nutritional ecology, Yearbook of Physical Anthropology 34: 283321.CrossRefGoogle Scholar
Sealy, J.C. Morris, A.G. Armstrong, R.A. Markell, A. & Schrire, C. 1993. An historic skeleton from the slave lodge at Vergelegen, South African Archaeological Society Goodwin Series 7: 8491.Google Scholar
Sealy, J.C. & Van Der Merwe, N.J. 1985. Isotope assessment of Holocene human diets in the southwestern Cape, South Africa, Nature 315: 138–40.CrossRefGoogle ScholarPubMed
Sealy, J.C. & Van Der Merwe, N.J. 1986. Isotope assessment and the seasonal–mobility hypothesis in the southwestern Cape of South Africa, Current Anthropology 27: 135–50.CrossRefGoogle Scholar
Sealy, J.C. & Van Der Merwe, N.J. 1988. Social, spatial and chronological patterning in marine food use as determined by ∂13C measurements of Holocene human skeletons from the southwestern Cape, South Africa, World Archaeology 20: 87102.CrossRefGoogle Scholar
Sealy, J.C. Van Der Merwe, N.J. Lee THORP, J.A. & Lanham, J.L. 1987. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing, Geochimica et Cosmochimica Acta 51: 2707–17.CrossRefGoogle Scholar
Sealy, J.C., Van Der Merwe, N.J., Sillen, A., Kruger, F.J. & Krueger, H.W. 1991. 87Sr/86Sr as a dietary indicator in modern and archaeological bone, Journal of Archaeological Science 18: 399416.CrossRefGoogle Scholar
Sillen, A. 1986. Biogenic and diagenetic Sr/Ca in Plio–Pleistocene fossils of the Omo Shungura formation, Paleobiology 12: 311–23.CrossRefGoogle Scholar
Sillen, A. 1989. Diagenesis of the inorganic phase of cortical bone, in Price, T.D. (ed.), The chemistry of prehistoric human bone: 211–29. Cambridge: Cambridge University Press.Google Scholar
Sillen, A. 1990. Response to N. Tuross, A.K. Behrensmeyer & E.D. Eanes, Journal of Archaeological Science 17: 595–6.CrossRefGoogle Scholar
Stenhouse, M.J. & Baxter, M.S. 1976. Glasgow University radiocarbon measurements VIII, Radiocarbon 18: 161–71.CrossRefGoogle Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark, Nature 292: 332–3.CrossRefGoogle ScholarPubMed
Tieszen, L.L. Boutton, T.W. Ottichilo, W.K. Nelson, D.E. & Brandt, D.H. 1989. An assessment of long-term food habits of Tsavo elephants based on stable carbon and nitrogen isotope ratios of bone collagen, African Journal of Ecology 27: 219–26.CrossRefGoogle Scholar
Tuross, N. Behrensmeyer, A.K. & Eanes, E.D. 1989. Strontium increases and crystallinity changes in taphonomic and archaeological bone, Journal of Archaeological Science 16: 661–72.CrossRefGoogle Scholar
Verano, J.W. & Dentro, M.J. 1993. Locals or foreigners? Morphological, biometrie and isotopic approaches to the question of group affinity in human skeletal remains recovered from unusual archaeological contexts, in Sandford, M.K. (ed.), Investigations of ancient human tissue: chemical analyses in anthropology: 361–86. New York (NY): Gordon & Breach.Google Scholar
Walker, P.L. & Deniro, M.J. 1986. Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in southern California, American Journal of Physical Anthropology 71: 5161.CrossRefGoogle ScholarPubMed