Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:52:40.008Z Has data issue: false hasContentIssue false

Representing children in excavated cemeteries: the intrinsic preservation factors

Published online by Cambridge University Press:  02 January 2015

Marija Djurić*
Affiliation:
Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia
Ksenija Djukić
Affiliation:
Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia
Petar Milovanović
Affiliation:
Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia
Aleksa Janović
Affiliation:
Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia
Petar Milenković
Affiliation:
Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, 4/2 Dr Subotica, 11000 Belgrade, Serbia

Extract

Children are often under-represented in excavated populations due to the poor survival of their bones. Using a group of medieval burials from Serbia, our researchers examine the differential survival of children and of different parts of the body within the same terrain, and rightly urge us to take these factors into consideration before attempting demographic, ritual or social interpretations.

Type
Research article
Copyright
Copyright © Antiquity Publications Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bello, S. 2005. The reciprocal effect of taphonomy, funerary practices and anatomical features on the state of preservation of human remains, in Zakrzewski, S.R. & Clegg, M. (ed.) Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology (British Archaeological Reports International series 1383): 110. Oxford: Archaeopress.Google Scholar
Bello, S. & Andrews, P. 2006. The intrinsic pattern of preservation of human skeletons and its influence on the interpretation of funerary behaviours, in Knusel, C. & Gowland, R. (ed.) The social archaeology of funerary remains: 113. Oxford: Oxbow.Google Scholar
Bello, S., Thomann, A., Signoli, M., Massa, E. Rabino & Dutour, O. 2002a. La conservation différentielle des os humains et le 'Profil théorique de survie osseuse'. Archéologie et Préhistoire 113: 105120.Google Scholar
Bello, S., Signoli, M., Massa, E. Rabino & Dutour, O. 2002b. Les processus de conservation différentielle du squelette des individus immatures. Implications sur les reconstitutions paléodémographiques. Bulletins et Mémoires de la Société d'Anthropologie de Paris 14(3–4): 245–62.Google Scholar
Bello, S., Thomann, A., Signoli, M., Dutour, O. & Andrews, P. 2006. Age and sex bias in the reconstruction of past population structures. American Journal of Physical Anthropology 129(1): 2438.CrossRefGoogle ScholarPubMed
Bouchud, J. 1977. Etude de la conservation différentielle des os des dents. Bulletin de l'Association Française pour l'Etude du Quaternaire Supplément 47: 6973.Google Scholar
Brothwell, D. 1981. Digging up bones. Oxford: Oxford University Press; London: British Museum (Natural History).Google Scholar
Buckberry, J. 2000. Missing, presumed buried? Bone diagenesis and the under-representation of Anglo-Saxon children. Assemblage 5: 114.Google Scholar
Duric, M., Rakocevic, Z. & Tuller, H. 2004. Factors affecting postmortem tooth loss. Journal of Forensic Science 49(6): 1313–18.CrossRefGoogle ScholarPubMed
Galloway, A., Willey, P. & Snyder, L. 1997. Human bone mineral densities and survival of bone elements: a contemporary sample, in Haglund, W.D. & Sorg, M.H. (ed.) Forensic taphonomy: the postmortem fate of human remains: 295317. Boca Raton (FL): CRC Press.Google Scholar
Garland, A.N. & Janaway, R.C. 1989. The taphonomy of inhumation burials, in Roberts, C., Lee, F. & Bintliff, J. (ed.) Burial archaeology: current research, methods and developments (British Archaeological Reports British series 211): 1537. Oxford: British Archaeological Reports.Google Scholar
Gordon, C.G. & Buikstra, J.E. 1981. Soil pH, bone preservation, and sampling bias at mortuary sites. American Antiquity 46(6): 566–71.CrossRefGoogle Scholar
Guy, H. & Masset, C. 1997. Particularités taphonomiques des os d'enfants, in Buchet, L. (ed.) L'enfant son corps, son histoire: 3543. Paris: Edition APDCA.Google Scholar
Guy, H., Masset, C. & Baud, C.A. 1997. Infant taphonomy. International Journal of Osteoarchaeology 7: 221–9.3.0.CO;2-Z>CrossRefGoogle Scholar
Haglund, W.D. & Sorg, M.H. (ed.). 1997. Forensic taphonomy: the postmortem fate of human remains. Boca Raton (FL): CRC Press.Google Scholar
Haglund, W.D. & Sorg, M.H. 2002. Advances in forensic taphonomy: method, theory and archaeological perspectives. Boca Raton (FL): CRC Press.Google Scholar
Henderson, J. 1987. Factors determining the state of preservation of human remains, in Boddington, A., Garland, A.N. & Janaway, R.C. (ed.) Death, decay and reconstruction: approaches to archaeology and forensic science: 4354. Manchester: Manchester University Press.Google Scholar
Hoppa, R.D. & Vaupel, J.W. (ed.). 2002. Paleodemography: age distribution from skeletal samples (Cambridge Studies in Biological and Evolutionary Anthropology 31). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ingvarsson-Sundström, A. 2003. Children lost and found. A bioarchaeological study of Middle Helladic children in Asine with a comparison to Lerna, with an appendix by Helena Soomer. Unpublished PhD dissertation, University of Uppsala.Google Scholar
Jenkins, C.H. & Khanna, S.K. 2005. Mechanics of materials: a modern integration of mechanics and materials in structural design. New York: Academic.Google Scholar
Kamp, K.A. 2001. Where have all the children gone? The archaeology of childhood. Journal of Archaeological Method and Theory 8(1): 134.CrossRefGoogle Scholar
Karkanas, P., Kyparissi-Apostolika, N., Bar-Yosef, O. & Weiner, S. 1999. Mineral assemblages in Theopetra, Greece: a framework for understanding diagenesis in a prehistoric cave. Journal of Archaeological Science 26: 1171–80.CrossRefGoogle Scholar
Klein, R.G. 1989. Why does skeletal part representation differ between smaller and larger bovids at Klasies River Mouth and other archaeological sites? Journal of Archaeological Science 6: 363–81.CrossRefGoogle Scholar
Lambert, J.B., Simpson, S.V., Weiner, J.G. & Buikstra, J.E. 1985. Induced metal-ion exchange in excavated human bone. Journal of Archaeological Science 12: 8592.CrossRefGoogle Scholar
Lee-Thorp, J. & Sealy, J. 2008. Beyond documenting diagenesis: the fifth international bone diagenesis workshop. Palaeogeography, Palaeoclimatology, Palaeoecology 266(3–4): 129–33.CrossRefGoogle Scholar
Leroi-Gourhan, A. 1964. Les religions de la prehistoire. Paris: Presses Univer.Google Scholar
Lewis, M.E. 2007. The bioarchaeology of children: perspectives from biological and. forensic anthropology. Cambridge: Cambridge University Press.Google Scholar
Lyman, R.L. 1996. Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
Maresh, M.M. 1955. Linear growth of the long bones of extremities from infancy through adolescence. American Journal of Diseases of Children 89: 725–42.Google Scholar
Maresh, M.M. 1970. Measurements from roentgenograms, heart size, long bone lengths, bone, muscles and fat widths, skeletal maturation, in Mccammon, R.W. (ed.) Human growth and development: 155200. Springfield (IL): Charles C. Thomas.Google Scholar
Mays, S. 1992. Taphonomic factors in a human skeletal assemblage. Circaea 9: 54–8.Google Scholar
Nielsen-Marsh, C. M. & Hedges, R. E. M. 2000. Patterns of diagenesis in bone II: effects of acetic acid treatment and the removal of diagenetic CO3 2?. Journal of Archaeological Science 27: 1151–9.CrossRefGoogle Scholar
Percac, S. & Nikolic, V. 1992. Structural analysis of the mandible by quantitative computed tomography. Surgical and Radiologic Anatomy 14(2): 155–8.CrossRefGoogle ScholarPubMed
Rauch, F. & Schoenau, E. 2001. Changes in bone density during childhood and adolescence: an approach based on bone's biological organization. Journal of Bone and Mineral Research 16: 597604.CrossRefGoogle ScholarPubMed
Rewekant, A. 2001. Do environmental disturbances of an individual's growth and development influence the later bone involution processes? A study of two mediaeval populations. International Journal of Osteoarchaeology 11: 433–43.CrossRefGoogle Scholar
Roksandic, M. 2002. Position of skeletal remains as a key to understanding mortuary behavior, in Haglund, W.D. & Sorg, M. (ed.) Advances in forensic taphonomy: method, theory and archaeological perspectives: 99117. Boca Raton (FL): CRC Press.Google Scholar
Scheuer, J.L. & Black, S.M. 2000. Developmental juvenile osteology. San Diego (CA): Academic.Google Scholar
Shea, J.J. 2006. Child's play: reflections on the invisibility of children in the Paleolithic record. Evolutionary Anthropology: Issues, News, and Reviews 15(6): 212–16.CrossRefGoogle Scholar
Smith, C.I., Nielsen-marsh, C.M., Jans, M.M.E. & Collins, M.J. 2007. Bone diagenesis in the European Holocene I: patterns and mechanisms. Journal of Archaeological Science 34(9): 1485–93.CrossRefGoogle Scholar
Stiner, M.C., Kuhn, S.L., Surovell, T.A., Goldberg, P., Meignen, L., Weiner, S. & Bar-Yosef, O. 2001. Bone preservation in Hayonim Cave (Israel): a macroscopic and mineralogical study. Journal of Archaeological Science 28: 643–59.CrossRefGoogle Scholar
Stojanowski, C.M., Seidemann, R.M. & Doran, G.H. 2002. Differential skeletal preservation at Windover Pond: causes and consequences. American Journal of Physical Anthropology 119: 1526.CrossRefGoogle ScholarPubMed
Tuller, H. & Duric, M. 2006. Keeping the pieces together: comparison of mass grave excavation methodology. Forensic Science International 156: 192200.Google Scholar
Ubelaker, D. 1978. Human skeletal remains; excavation, analysis, interpretation. Chicago (IL): Aldine.Google Scholar
Van Eijden, T.M.G.J. 2000. Biomechanics of the mandible. Criticial Reviews in Oral Biology & Medicine 11(1): 123–36.CrossRefGoogle ScholarPubMed
Von Endt, D. W. & Ortner, D. J. 1984. Experimental effects of bone size and temperature on bone diagenesis. Journal of Archaeological Science 11: 247–53.CrossRefGoogle Scholar
Waldron, T. 1987. The relative survival of the human skeleton: implications for palaeopathology, in Boddington, A., Garland, A.N. & Janaway, R.C. (ed.) Death, decay and reconstruction: approaches to archaeology and forensic science: 5564. Manchester: Manchester University Press.Google Scholar
Walker, P.L., Johnson, J.R. & Lambert, P.M. 1988. Age and sex biases in the preservation of human skeletal remains. American Journal of Physical Anthropology 76: 183–8.CrossRefGoogle ScholarPubMed
Willey, P., Galloway, A. & Snyder, L. 1997. Bone mineral density and survival of elements and element portions in the bones of the Crow Creek Massacre victims. American Journal of Physical Anthropology 104: 513–28.3.0.CO;2-S>CrossRefGoogle ScholarPubMed