Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T22:58:32.776Z Has data issue: false hasContentIssue false

‘The Farm Beneath the Sand’ – an archaeological case study on ancient ‘dirt’ DNA

Published online by Cambridge University Press:  02 January 2015

Martin B. Hebsgaard
Affiliation:
Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
M. Thomas P. Gilbert
Affiliation:
Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
Jette Arneborg
Affiliation:
Danish Middle Ages & Renaissance, National Museum of Denmark, Frederiksholm Kanal 12, DK-1220 Copenhagen K, Denmark
Patricia Heyn
Affiliation:
Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
Morten E. Allentoft
Affiliation:
School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Michael Bunce
Affiliation:
Ancient DNA Research Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, South Street, Perth 6150 Australia
Kasper Munch
Affiliation:
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
Charles Schweger
Affiliation:
Department of Anthropology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
Eske Willerslev
Affiliation:
Centre for Ancient Genetics, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark Danish Middle Ages & Renaissance, National Museum of Denmark, Frederiksholm Kanal 12, DK-1220 Copenhagen K, Denmark School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Ancient DNA Research Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, South Street, Perth 6150 Australia Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA Department of Anthropology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is probable that ‘The Farm Beneath the Sand’ will come to stand for a revolution in archaeological investigation. The authors show that a core of soil from an open field can provide a narrative of grazing animals, human occupation and their departure, just using DNA and AMS dating. In this case the conventional archaeological remains were nearby, and the sequence obtained by the old methods of digging and faunal analysis correlated well with the story from the core of ancient ‘dirt’ DNA. The potential for mapping the human, animal and plant experience of the planet is stupendous.

Type
Method
Copyright
Copyright © Antiquity Publications Ltd 2009

References

Andreasen, C. & Arneborg, J.. 1992a. Gården under Sandet. Undersøgelserne 1991. Tusaat/Forskning i Grønland 1/92: 1018.Google Scholar
Andreasen, C. 1992b. Gården under Sandet: Nye nordboarkæologiske undersøgelser i Vesterbygden 1991. Grønlandsk Kultur og Samfundsforskning 92: 1149.Google Scholar
Arneborg, J. 2004. Det europæiske landnam. Nordboerne i Grønland, in Gulløv, H.C. (ed.) Grønlands forhistorie: 220–22. Copenhagen: Gyldendal.Google Scholar
Arneborg, J., Heinemeier, J., Rud, N. & Sveinbj Örnsdóttir, A.. 1998. AMS dates from the hall (XVII), in Arneborg, J. & Gulløv, H.C. (ed.) Man, culture and environment in ancient Greenland: 2730. Copenhagen: Danish National Museum & Danish Polar Center.Google Scholar
Binladen, J., Wiuf, C., Gilbert, M.T.P., Bunce, M., Larson, G., Barnet, R., Hansen, A.J. & Willerslev, E.. 2006. Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics 172: 733–73.Google Scholar
Bruun, D. 1928. Fortidsminder og nutidshjem paa Island. Copenhagen: Gyldendal.Google Scholar
Bulat, S.A., Lübeck, M., Alekhina, I.A., Jensen, D.F., Knudsen, I.M.B. & Lübeck, P.S.. 2000. Identification of an UP-PCR derived SCAR marker for an antagonistic strain of Clonostachys rosea and development of a strain-specific PCR detection assay. Applied and Environmental Microbiology 66: 4758–47.Google Scholar
Bull, I.D., Simpson, I.A., Van Bergen, P.F. & Evershed, R.P.. 1999. Muck n'molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73: 8696.Google Scholar
Crecchio, C. & Stotzky, G.. 1998. Insecticidal activity and biodegradation of the toxin from Bacillus thuringiensis subsp. kustuki bound to humic acids from soil. Soil Biology & Biochemistry 30: 463–46.Google Scholar
Del Pozo, O. & Lam, E.. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology 8: 1129–11.Google Scholar
Enghoff, I.B. 2003. Hunting, fishing and animal husbandry at ‘The Farm Beneath the Sand', western Greenland: an archaezoological analysis of a Norse farm in the Western Settlement (Meddelelser om Grønland, Man & Society 28). Copenhagen: Danish Polar Center.Google Scholar
Gilbert, M.P.T.., Rudbeck, L., Willerslev, E., Hansen, A.J., Smith, C., Penkman, K.E.H., Prangenberg, K., Nielsen-Marsh, C.M., Jans, M.E., Arthur, P., Lynnerup, N., Turner-Walker, G., Biddle, M., Kjølbye-Biddle, B. & Collins, M.. 2005. Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy. Journal of Archaeological Science 32: 785–78.Google Scholar
Gilbert, M.T.P., Jenkins, D.L., Gotherstrom, A., Naveran, N., Sanchez, J.J., Hofreiter, M., Thomsen, P.F., Binladen, J., Higham, T.F.G., Yohe, R.M., Parr, R., Cummings, L.S. & Willerslev, E.. 2008. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320: 786–7.Google Scholar
Haile, J., Holdaway, R., Oliver, K., Bunce, M., Gilbert, M.T.P., Nielsen, R., Munch, K., HO, S.Y.W. & Willerslev, E.. 2007. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Molecular Biology Evolution 24: 982–9.Google Scholar
Hansen, A.J., Mitchel, D.L., RØnn, R., Wiuf, C., Paniker, L., Binladen, J., Brand, T.B., Gilichinsky, D.A. & Willerslev, E.. 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 2: 1175–9.Google Scholar
Hebsgaard, M.B., Phillips, M.J. & Willerslev, E.. 2005. Geologically ancient DNA: fact or artefact? Trends in Microbiology 13: 212–21.Google Scholar
Hofreiter, M., Mead, J.I., Martin, P. & Poinar, H.N.. 2003. Molecular caving. Current Biology 13: R693–5.Google Scholar
Johnson, S.S., Hebsgaard, M.B., Christensen, T., Mastepanov, M., Nielsen, R., Munch, K., Brand, T.B., Gilbert, M.T.P., Zuber, M.T., Bunce, M., Rønn, R., Gilichinsky, D., Froese, D. & Willerslev, E.. 2007. Ancient bacteria show evidence of DNA repair. Proceedings of the National Academy of Sciences USA 104: 14401–5.Google Scholar
Lydolph, M.C., Jacobsen, J., Arctander, P., Gilbert, M.T.P., Gillichinsky, D.A., Hansen, A.J., Willerslev, E. & Lange, L.. 2005. Beringian plaeoecology inferred from permafrost preserved fungi DNA. Applied Environmental Microbiology 71: 1012–10.Google Scholar
Meier, P. & Wackemagel, W.. 2003. Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic research 12: 293304.Google Scholar
Munch, K., Boomsma, W., Huelsenbeck, J.P., Willerslev, E. & Nielsen, R.. 2008. Statistical assignment of DNA sequences using Bayesian phylogenetics. Systematic Biology 57: 750–7.Google Scholar
Panagiotakopulu, E., Skidmore, P. & Buckland, P.. 2006. Fossil insect evidence for the end of the Western Settlement in Norse Greenland. Naturwissenschaften 94(4): 300–30.Google Scholar
Poté, J., Rossé, P., Rosselli, W., Van Tran, V. & Wildi, W.. 2005. Kinetics of mass and DNA decomposition in tomato leaves. Chemosphere 61: 677–67.Google Scholar
Schweger, C.E. 1998. Geoarchaeology of the GUS site: a preliminary framework, in Arneborg, J. & Gulløv, H.C. (ed.) Man, culture and environment in ancient Greenland: 1418. Copenhagen: Danish National Museum & Danish Polar Center.Google Scholar
Trevors, J.T. 1996. Bacterial biodiversity in soil with an emphasis on chemically contaminated soils. Water, Air and Soil Pollution 34: 125–12.Google Scholar
Turner, B.L. & Newman, S.. 2005. Soil phosphorus compounds in subtropical wetlands: the importance of phosphate diesters. Journal of Environmental Quality 34: 1921–9.Google Scholar
Willerslev, E. & Cooper, A.. 2005. Ancient DNA. Proceedings of the Royal Society of London, Series B, Biological Sciences 272: 316.Google Scholar
Willerslev, E., Hansen, A.J., Christensen, B., Steffensen, J.P. & Arctander, P.. 1999. Diversity of Holocene life forms in fossil glacier ice. Proceedings of the National Academy of Sciences USA 96: 8017–80.Google Scholar
Willerslev, E., Hansen, A.J., Brand, T.B., Binladen, J., Gilbert, T.M.P., Shaperio, B., Bunce, M.Wiuf, C., Gilichinsky, D.A. & Cooper, A.. 2003. Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300: 792–7.Google Scholar
Willerslev, E., Hansen, A.J., Brand, T.B., Rønn, R., Barnes, I., Wiuf, C., Gilichinsky, D.A., Mitchell, D. & Cooper, A.. 2004a. Long-term persistence of bacterial DNA. Current Biology 14: R910.Google Scholar
Willerslev, E., Hansen, A.J. & Poinar, H.N.. 2004b. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology an Evolution 19: 141–1.Google Scholar
Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M.B., Brand, T.B., Hofreiter, M., Bunce, M., Poinar, H.N., Dahl-Jensen, D., Johnsen, S., Steffensen, J.P., Bennike, O., Funder, S., Schwenninger, J.-L., Nathan, R., Armitage, S., Barker, J., Sharp, M., Penkman, K.E.H., Haile, J., Taberlet, P., Gilbert, M.T.P., Casoli, A., Campani, E. & Collins, M.J.. 2007. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317: 111–1.Google Scholar