Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:29:14.887Z Has data issue: false hasContentIssue false

Holocene resource exploitation along the Nile: diet and subsistence strategies of Mesolithic and Neolithic societies at Khor Shambat 1, Sudan

Published online by Cambridge University Press:  30 September 2021

Julie Dunne*
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol, UK
Maciej Jórdeczka
Affiliation:
Institute of Archaeology and Ethnology, PAS, Poznan, Poland
Marek Chłodnicki
Affiliation:
Archaeological Museum in Poznan, Poland
Karen Hardy
Affiliation:
Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain Departament de Prehistòria, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Spain
Lucy Kubiak-Martens
Affiliation:
BIAX Consult, Biological Archaeology & Environmental Reconstruction, Zaandam, the Netherlands
Magdalena Moskal-del Hoyo
Affiliation:
W. Szafer Institute of Botany PAS, Krakow, Poland
Marta Osypińska
Affiliation:
Institute of Archaeology, University of Wrocław, Poland
Marta Portillo
Affiliation:
Department of Archaeology and Anthropology, Institució Milà i Fontanals, Spanish National Research Council (IMF-CSIC), Barcelona, Spain
Iwona Sobkowiak-Tabaka
Affiliation:
Faculty of Archaeology, Adam Mickiewicz University, Poznan, Poland
Selina Delgado-Raack
Affiliation:
Departament de Prehistòria, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Spain
Przemysław Bobrowski
Affiliation:
Institute of Archaeology and Ethnology, PAS, Poznan, Poland
Paul S. Breeze
Affiliation:
Department of Geography, King's College London, UK
Nick Drake
Affiliation:
Department of Geography, King's College London, UK The Max Planck Institute for the Science of Human History, Jena, Germany
Katie Manning
Affiliation:
Department of Geography, King's College London, UK
Richard P. Evershed
Affiliation:
Organic Geochemistry Unit, School of Chemistry, University of Bristol, UK
*
*Author for correspondence ✉ julie.dunne@bristol.ac.uk

Abstract

The subsistence practices of Holocene communities living in the Nile Valley of Central Sudan are comparatively little known. Recent excavations at Khor Shambat, Sudan, have yielded well-defined Mesolithic and Neolithic stratigraphy. Here, for the first time, archaeozoological, palaeobotanical, phytolith and dental calculus studies are combined with lipid residue analysis of around 100 pottery fragments and comparative analysis of faunal remains and organic residues. This holistic approach provides valuable information on changes in adaptation strategies, from Mesolithic hunter-gatherers to Neolithic herders exploiting domesticates. A unique picture is revealed of the natural environment and human subsistence, demonstrating the potential wider value of combining multiple methods.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of Antiquity Publications Ltd.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkell, A.J. 1949. Early Khartoum. Oxford: Oxford University Press.Google Scholar
Balasse, M. 2003. Keeping the young alive to stimulate milk production? Differences between cattle and small stock. Anthropozoologica 37: 337.Google Scholar
Barakat, H.N. 1995. Middle Holocene vegetation and human impact in Central Sudan: charcoal from the Neolithic site at Kadero. Vegetation History and Archaeobotany 4: 101108. https://doi.org/10.1007/BF00206918CrossRefGoogle Scholar
Beldados, A. 2017. Archaeobotanical investigation of charred and desiccated fruit stones and seeds from Late Holocene contexts in Kassala and its environs: window to past ecology and subsistence. Ethiopian Journal of the Social Sciences and Humanities 13: 123. https://doi.org/10.4314/ejossah.v13i1.1CrossRefGoogle Scholar
Boutton, T.W. 1991. Stable carbon isotope ratios of natural materials II: atmospheric, terrestrial, marine and freshwater environments, in Coleman, D.C. & Fry, B. (ed.) Carbon isotope techniques: 173–85. New York: Academic. https://doi.org/10.1016/B978-0-12-179730-0.50016-3CrossRefGoogle Scholar
Bronk Ramsey, C. 2017. OxCal v4.3. Available at: https://c14.arch.ox.ac.uk/oxcal.html (accesed 16 December 2020).Google Scholar
Chaix, L. & Honegger, M.. 2014. New data on the animal exploitation from the Mesolithic to the Neolithic periods in Northern Sudan, in Kerner, S., Dann, R. & Bangsgaard, P. (ed.) Climate changes in ancient societies: 197214. Copenhagen: Museum Tusculanum.Google Scholar
Clark, J.L. & Kandel, A.W.. 2013. The evolutionary implications of variation in human hunting strategies and diet breadth during the Middle Stone Age of Southern Africa. Current Anthropology 54: 269–87. https://doi.org/10.1086/673386CrossRefGoogle Scholar
Correa-Ascencio, M. & Evershed, R.P.. 2014. High-throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Analytical Methods 6: 1330–40. https://doi.org/10.1039/c3ay41678jCrossRefGoogle Scholar
Cramp, L. & Evershed, R.P.. 2014. Reconstructing aquatic resource exploitation in human prehistory using lipid biomarkers and stable isotopes, in Holland, H.D. & Turekian, K.K. (ed.) Treatise on geochemistry (second edition): 319–39. Oxford: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.01225-0CrossRefGoogle Scholar
Drake, N.A. et al. 2018. Reconstructing palaeoclimate and hydrological fluctuations in the Fezzan Basin (southern Libya) since 130 ka: a catchment-based approach. Quaternary Science Reviews 200: 76394. https://doi.org/10.1016/j.quascirev.2018.09.042CrossRefGoogle Scholar
Dudd, S.N. & Evershed, R.P.. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282: 1478–81. https://doi.org/10.1126/science.282.5393.1478CrossRefGoogle ScholarPubMed
Dunne, J. et al. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486: 390–94. https://doi.org/10.1038/nature11186CrossRefGoogle ScholarPubMed
Dunne, J. et al. 2016. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nature Plants 3: 16. https://doi.org/10.1038/nplants.2016.194Google ScholarPubMed
Dunne, J. et al. 2017. Timing and pace of dairying inception and animal husbandry practices across Holocene North Africa. Quaternary International 471: 147–59. https://doi.org/10.1016/j.quaint.2017.06.062CrossRefGoogle Scholar
Dunne, J. et al. 2019. Pots, plants and animals: broad-spectrum subsistence strategies in the Early Neolithic of the Moroccan Rif region. Quaternary International 555: 96109. https://doi.org/10.1016/j.quaint.2019.12.009CrossRefGoogle Scholar
Eglinton, G. & Hamilton, R.J.. 1967. Leaf epicuticular waxes. Science 156: 1322–35. https://doi.org/10.1126/science.156.3780.1322CrossRefGoogle ScholarPubMed
Fuller, D.Q. & Carratero, L. González. 2018. The archaeology of Neolithic cooking traditions: archaeobotanical approaches to baking, boiling and fermenting. Archaeology International 21: 109–21. https://doi.org/10.5334/ai-391CrossRefGoogle Scholar
Fuller, D.Q. & Stevens, C.J.. 2018. Sorghum domestication and diversification: a current archaeobotanical perspective, in Mercuri, A.M., D'Andrea, A.C., Fornaciari, R. & Höhn, A. (ed.) Plants and people in the African past: 427–52. Cham: Springer. https://doi.org/10.1007/978-3-319-89839-1_19CrossRefGoogle Scholar
Gasse, F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 9: 189211. https://doi.org/10.1016/S0277-3791(99)00061-XCrossRefGoogle Scholar
Gautier, A. & Neer, W. Van. 2011. The fauna of Kadero and the arrival of pastoralism in the Nile Valley of Central Sudan, in Chłodnicki, M., Kobusiewicz, M. & Kroeper, K. (ed.) Kadero: the Lech Krzyzaniak Excavations in the Sudan: 375408. Poznań: Poznań Archaeological Museum.Google Scholar
Gillis, R. et al. 2013. Prediction models for age-at-death estimates for calves, using unfused epiphyses and diaphyses. International Journal of Osteoarchaeology 25: 912–22. https://doi.org/10.1002/oa.2377CrossRefGoogle Scholar
Halmemies-Beauchet-Filleau, A. et al. 2014. Effect of replacing grass silage with red clover silage on nutrient digestion, nitrogen metabolism, and milk fat composition in lactating cows fed diets containing a 60:40 forage-to-concentrate ratio. Journal of Dairy Science 97: 3761–76. https://doi.org/10.3168/jds.2013-7358CrossRefGoogle ScholarPubMed
Honegger, M. & Williams, M.. 2015. Human occupations and environmental changes in the Nile Valley during the Holocene: the case of Kerma in Upper Nubia (northern Sudan). Quaternary Science Review 130: 141–54. https://doi.org/10.1016/j.quascirev.2015.06.031CrossRefGoogle Scholar
Jórdeczka, M., Chłodnicki, M., Sobkowiak-Tabaka, I. & Stanaszek, Ł.M.. 2020a. Rebirth in the afterlife: Neolithic pot burials from Khor Shambat, Sudan. AZANIA, Archaeological Research in Africa 55: 4468. https://doi.org/10.1080/0067270X.2020.1721840CrossRefGoogle Scholar
Jórdeczka, M. et al. 2020b. Neolithic inhabitants of Khor Shambat 1, Sudan. Archeaeologia Polona 58: 135–63. https://doi.org/10.23858/APa58.2020.008CrossRefGoogle Scholar
Krzyżaniak, L. 1978. New light on early food-production in the Central Sudan. The Journal of African History 19: 159–72. https://doi.org/10.1017/S0021853700027572CrossRefGoogle Scholar
Krzyżaniak, L. 1991. Early farming in the Middle Nile Basin: recent discoveries at Kadero (Central Sudan). Antiquity 65: 515–32. https://doi.org/10.1017/S0003598X0008011XCrossRefGoogle Scholar
Kubiak-Martens, L. 2011. Botanical evidence, in Chłodnicki, M., Kobusiewicz, M. & Kroeper, K. (ed.) Kadero: the Lech Krzyżaniak excavations in the Sudan: 409–15. Poznan: Poznan Archaeological Museum.Google Scholar
Kuper, R. & Kröpelin, S.. 2006. Climate- controlled Holocene occupation in the Sahara: motor of Africa's evolution. Science 313: 803807. https://doi.org/10.1126/science.1130989CrossRefGoogle ScholarPubMed
Majid, A. 1989. Exploitation of plants in the Eastern Sahel (Sudan), 5000–2000 BC, in Krzyżaniak, L. & Kobusiewicz, M. (ed.) Late prehistory of the Nile Basin and the Sahara: 459–68. Poznan: Poznan Archaeological Museum.Google Scholar
Maritan, L. et al. 2018. Fish and salt: the successful recipe of White Nile Mesolithic hunter-gatherer-fishers. Journal of Archaeological Science 92: 4862. https://doi.org/10.1016/j.jas.2018.02.008CrossRefGoogle Scholar
Out, W.A. et al. 2016. Plant exploitation in Neolithic Sudan: a review in the light of new data from the cemeteries R12 and Ghaba. Quaternary International 412: 3653. https://doi.org/10.1016/j.quaint.2015.12.066CrossRefGoogle Scholar
Portillo, M. & Albert, R.M.. 2014. Microfossil evidence for grinding activities. Revista d'Arqueologia de Ponent 24: 103–12.Google Scholar
Radini, A. et al. 2017. Beyond food: the rich and varied pathways for inclusion of microscopic remains into ancient dental calculus. American Journal of Physical Anthropology 162: 7183. https://doi.org/10.1002/ajpa.23147CrossRefGoogle Scholar
Reimer, P.J. et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon 55: 1869–87. https://doi.org/10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
Saied, A.S., Gebauer, J., Hammer, K. & Buerkert, A.. 2008. Ziziphus spina-christi (L.) Willd.: a multipurpose fruit tree. Genetic Resources and Crop Evolution 55: 929–37. https://doi.org/10.1007/s10722-007-9299-1CrossRefGoogle Scholar
Supplementary material: PDF

Dunne et al. supplementary material

Dunne et al. supplementary material

Download Dunne et al. supplementary material(PDF)
PDF 1.3 MB