Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T07:30:42.411Z Has data issue: false hasContentIssue false

A stable relationship: isotopes and bioarchaeology are in it for the long haul

Published online by Cambridge University Press:  08 August 2017

Kate Britton*
Affiliation:
Department of Archaeology, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany (Email: k.britton@abdn.ac.uk)

Extract

Given their ubiquity in dietary reconstruction, it is fitting that the story of isotopes began with a conversation over dinner. Although coined in scientific literature by Frederick Soddy (1913), the word ‘isotope’ was first conceived by Margaret Todd, a medical doctor (also known as the novelist ‘Graham Travers’, and an all-round gender-stereotype-smasher of their age). In 1912, Soddy and Todd were attending a supper in Glasgow. When talk turned to work, Soddy described the then nameless concept of elements of different masses that occupy the same place in the periodic table. Todd suggested the term ‘isotope’, from the Greek isos (‘same’) + topos (‘place’), and the name stuck (Nicol 1957; Nagel 1982).

Type
Research
Copyright
Copyright © Antiquity Publications Ltd, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M.M., Gerrard, C.M., Gutiérrez, A. & Millard, A.R.. 2015. Diet, society, and economy in late medieval Spain: stable isotope evidence from Muslims and Christians from Gandía, Valencia. American Journal of Physical Anthropology 156: 263–73. https://doi.org/10.1002/ajpa.22647 Google Scholar
Ambrose, S.H. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17: 431–51. https://doi.org/10.1016/0305-4403(90)90007-R CrossRefGoogle Scholar
Ambrose, S.H. 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science 18: 293317. https://doi.org/10.1016/0305-4403(91)90067-Y Google Scholar
Ambrose, S.H. 2000. Controlled diet and climate experiments on nitrogen isotope ratios of rats, in Ambrose, S.H. & Katzenberg, M.A. (ed.) Biogeochemical approaches to palaeodietary analysis. New York: Kluwer Academic/Plenum.Google Scholar
Ambrose, S.H. & Norr, L.. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, in Lambert, J.B. & Grupe, G. (ed.) Prehistoric human bone: archaeology at the molecular level: 137. New York: Springer.Google Scholar
Balasse, M. 2003. Potential biases in sampling design and interpretation of intra-tooth isotope analysis. International Journal of Osteoarchaeology 13: 310. https://doi.org/10.1002/oa.656 Google Scholar
Balasse, M., Tresset, A. & Ambrose, S.H.. 2006. Stable isotope evidence (δ13C, δ18O) for winter feeding on seaweed by Neolithic sheep of Scotland. Journal of Zoology 270: 170–76. https://doi.org/10.1111/j.1469-7998.2006.00104.x Google Scholar
Beaumont, J. & Montgomery, J.. 2015. Oral histories: a simple method of assigning chronological age to isotopic values from human dentine collagen. Annals of Human Biology 42: 407–14. https://doi.org/10.3109/03014460.2015.1045027 CrossRefGoogle ScholarPubMed
Bentley, R.A. 2013. Mobility and the diversity of Early Neolithic lives: isotopic evidence from skeletons. Journal of Anthropological Archaeology 32: 303–12. https://doi.org/10.1016/j.jaa.2012.01.009 Google Scholar
Bentley, R.A. & Knipper, C.. 2005. Transhumance at the early Neolithic settlement at Vaihingen (Germany). Antiquity 79 (306): Project Gallery. Available at: http://www.antiquity.ac.uk/projgall/bentley306/ (accessed 8 May 2017).Google Scholar
Bentley, R.A., Pietrusewsky, M., Douglas, M.T. & Atkinson, T.C.. 2005. Matrilocality during the prehistoric transition to agriculture in Thailand? Antiquity 79: 865–81. https://doi.org/10.1017/S0003598X00115005 Google Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F. & Jaubert, J.. 2009. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283: 133–43. https://doi.org/10.1016/j.epsl.2009.04.005 Google Scholar
Bocherens, H. 2003. Isotopic biogeochemistry and the palaeoecology of the mammoth steppe fauna. DEINSEA—Annual of the Natural History Museum Rotterdam 9: 5776.Google Scholar
Bogaard, A. & Outram, A.K.. 2013. Palaeodiet and beyond: stable isotopes in bioarchaeology. World Archaeology 45: 333–37. https://doi.org/10.1080/00438243.2013.829272 Google Scholar
Brettell, R., Montgomery, J. & Evans, J.. 2012. Brewing and stewing: the effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. Journal of Analytical Atomic Spectrometry 27: 778–85. https://doi.org/10.1039/c2ja10335d Google Scholar
Britton, K., Grimes, V., Niven, L., Steele, T., McPherron, S., Soressi, M., Kelly, T.E., Jaubert, J., Hublin, J.-J. & Richards, M.P.. 2011. Strontium isotope evidence for migration in late Pleistocene Rangifer: implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. Journal of Human Evolution 61: 176–85. https://doi.org/10.1016/j.jhevol.2011.03.004 Google Scholar
Burton, J.H., Price, T.D. & Middleton, W.D.. 1999. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26: 609–16. https://doi.org/10.1006/jasc.1998.0378 Google Scholar
Collins, M.J., Nielsen-Marsh, C.M., Hiller, J., Smith, C.I., Roberts, J.P., Prigodich, R.V., Wess, T.J., Csapò, J., Millard, A.R. & Turner-Walker, G.. 2002. The survival of organic matter in bone: a review. Archaeometry 44: 383–94. https://doi.org/10.1111/1475-4754.t01-1-00071 Google Scholar
Colonese, A.C., Farrell, T., Lucquin, A., Firth, D., Charlton, S., Robson, H.K., Alexander, M. & Craig, O.E.. 2015. Archaeological bone lipids as palaeodietary markers. Rapid Communications in Mass Spectrometry 29: 611–18. https://doi.org/10.1002/rcm.7144 CrossRefGoogle ScholarPubMed
Copeland, S.R., Sponheimer, M., de Ruiter, D.J., Lee-Thorp, J.A., Codron, D., le Roux, P.J., Grimes, V. & Richards, M.P.. 2011. Strontium isotope evidence for landscape use by early hominins. Nature 474: 7678. https://doi.org/10.1038/nature10149 Google Scholar
Corr, L.T., Sealy, J.C., Horton, M.C. & Evershed, R.P.. 2005. A novel marine dietary indicator utilising compound-specific bone collagen amino acid δ13C values of ancient humans. Journal of Archaeological Science 32: 321–30. https://doi.org/10.1016/j.jas.2004.10.002 CrossRefGoogle Scholar
Craig, H. 1961. Isotopic variations in meteoric waters. Science 133: 1702–703. https://doi.org/10.1126/science.133.3465.1702 Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16: 436–68. https://doi.org/10.3402/tellusa.v16i4.8993 Google Scholar
DeNiro, M.J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317: 806809. https://doi.org/10.1038/317806a0 Google Scholar
DeNiro, M.J. & Epstein, S.. 1978a. Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science 201: 906908. https://doi.org/10.1126/science.201.4359.906 CrossRefGoogle ScholarPubMed
DeNiro, M.J. & Epstein, S.. 1978b. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495506. https://doi.org/10.1016/0016-7037(78)90199-0 CrossRefGoogle Scholar
DeNiro, M.J. & Epstein, S.. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–51. https://doi.org/10.1016/0016-7037(81)90244-1 Google Scholar
Ericson, J.E. 1985. Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution 14: 503–14. https://doi.org/10.1016/S0047-2484(85)80029-4 Google Scholar
Eriksson, G. & Lidén, K.. 2013. Dietary life histories in Stone Age Northern Europe. Journal of Anthropological Archaeology 32: 288302. https://doi.org/10.1016/j.jaa.2012.01.002 Google Scholar
Feranec, R., García, N., Díez, J.C. & Arsuaga, J.L.. 2010. Understanding the ecology of mammalian carnivorans and herbivores from Valdegoba Cave (Burgos, northern Spain) through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 297: 263–72. https://doi.org/10.1016/j.palaeo.2010.08.006 CrossRefGoogle Scholar
Fernandes, R., Millard, A.R., Brabec, M., Nadeau, M.-J. & Grootes, P.. 2014. Food Reconstruction Using Isotopic Transferred Signals (FRUITS): a Bayesian model for diet reconstruction. PLoS ONE 9: e87436. https://doi.org/10.1371/journal.pone.0087436 CrossRefGoogle ScholarPubMed
Fogel, M.L. & Tuross, N.. 2003. Extending the limits of paleodietary studies of humans with compound specific carbon isotope analysis of amino acids. Journal of Archaeological Science 30: 535–45. https://doi.org/10.1016/S0305-4403(02)00199-1 Google Scholar
Fogel, M.L., Tuross, N. & Owsley, D.. 1989. Nitrogen isotope tracers of human lactation in modern and archaeological populations. Carnegie Institute Year Book 88: 111–17.Google Scholar
Grimes, V. & Pellegrini, M.. 2013. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Communications in Mass Spectrometry 27: 375–90. https://doi.org/10.1002/rcm.6463 Google Scholar
Haak, W., Brandt, G., de Jong, H.N., Meyer, C., Ganslmeier, R., Heyd, V., Hawkesworth, C., Pike, A.W.G., Meller, H. & Alt, K.W.. 2008. Ancient DNA, strontium isotopes, and osteological analyses shed light on social and kinship organization of the Later Stone Age. Proceedings of the National Academy of Sciences of the USA 105: 18226–31. https://doi.org/10.1073/pnas.0807592105 Google Scholar
Haydock, H., Clarke, L., Craig-Atkins, E., Howcroft, R. & Buckberry, J.. 2013. Weaning at Anglo-Saxon Raunds: implications for changing breastfeeding practice in Britain over two millennia. American Journal of Physical Anthropology 151: 604–12. https://doi.org/10.1002/ajpa.22316 Google Scholar
Heaton, T.H.E. 1999. Spatial, species and temporal variations in the 13C/12C ratios of C3 plants: implications for palaeodiet studies. Journal of Archaeological Science 26: 637–49. https://doi.org/10.1006/jasc.1998.0381 Google Scholar
Hedges, R.E.M., Millard, A.R. & Pike, A.W.G.. 1995. Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22: 201209. https://doi.org/10.1006/jasc.1995.0022 Google Scholar
Hoppe, K.A., Koch, P.L. & Furutani, T.T.. 2003. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13: 2028. https://doi.org/10.1002/oa.663 Google Scholar
Howland, M.R., Corr, L.T., Young, S.M.M., Jones, V., Jim, S., van der Merwe, N.J., Mitchell, A.D. & Evershed, R.P.. 2003. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. International Journal of Osteoarchaeology 13: 5465. https://doi.org/10.1002/oa.658 Google Scholar
Jaouen, K. & Pons, M.-L.. 2016. Potential of non-traditional isotope studies for bioarchaeology. Archaeological and Anthropological Sciences. First published online 3 November 2016. https://doi.org/10.1007/s12520-016-0426-9 Google Scholar
Jaouen, K., Szpak, P. & Richards, M.P.. 2016. Zinc isotope ratios as indicators of diet and trophic level in arctic marine mammals. PLoS ONE 11: e0152299. https://doi.org/10.1371/journal.pone.0152299 Google Scholar
Jay, M., Fuller, B.T., Richards, M.P., Knüsel, C.J. & King, S.S.. 2008. Iron Age breastfeeding practices in Britain: isotopic evidence from Wetwang Slack, East Yorkshire. American Journal of Physical Anthropology 136: 327–37. https://doi.org/10.1002/ajpa.20815 Google Scholar
Jim, S., Ambrose, S.H. & Evershed, R.P.. 2004. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochimica et Cosmochimica Acta 68: 6172. https://doi.org/10.1016/S0016-7037(03)00216-3 CrossRefGoogle Scholar
Knudson, K.J. & Stojanowski, C.M.. 2008. New directions in bioarchaeology: recent contributions to the study of human social identities. Journal of Archaeological Research 16: 397432. https://doi.org/10.1007/s10814-008-9024-4 Google Scholar
Koch, P.L., Tuross, N. & Fogel, M.L.. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24: 417–29. https://doi.org/10.1006/jasc.1996.0126 Google Scholar
Kohn, M.J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60: 4811–29. https://doi.org/10.1016/S0016-7037(96)00240-2 Google Scholar
Laland, K.N. & O'Brien, M.J.. 2010. Niche construction theory and archaeology. Journal of Archaeological Method and Theory 17: 303–22. https://doi.org/10.1007/s10816-010-9096-6 Google Scholar
Laland, K.N., Odling-Smee, J. & Myles, S.. 2010. How culture shaped the human genome: bringing genetics and the human sciences together. Nature Review Genetics 11: 137–48. https://doi.org/10.1038/nrg2734 Google Scholar
Lamb, A.L., Evans, J.E., Buckley, R. & Appleby, J.. 2014. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. Journal of Archaeologial Science 50: 559–65. https://doi.org/10.1016/j.jas.2014.06.021 Google Scholar
Lee-Thorp, J.A., Sponheimer, M., Passey, B.H., de Ruiter, D.J. & Cerling, T.E.. 2010. Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3389–96. https://doi.org/10.1098/rstb.2010.0059 Google Scholar
Lightfoot, E. & O'Connell, T.C.. 2016. On the use of biomineral oxygen isotope data to identify human migrants in the archaeological record: intra-sample variation, statistical methods and geographical considerations. PLoS ONE 11: e0153850. https://doi.org/10.1371/journal.pone.0153850 Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48: 385–90. https://doi.org/10.1016/0016-7037(84)90259-X Google Scholar
Luz, B., Kolodny, Y. & Horowitz, M.. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689–93. https://doi.org/10.1016/0016-7037(84)90338-7 CrossRefGoogle Scholar
Makarewicz, C.A. 2016. Toward an integrated isotope zooarchaeology, in Grupe, G. & McGlynn, C.G. (ed.) Isotopic landscapes in bioarchaeology: 189209. Berlin & Heidelberg: Springer.CrossRefGoogle Scholar
Makarewicz, C.A. & Sealy, J.. 2015. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science 56: 146–58. https://doi.org/10.1016/j.jas.2015.02.035 CrossRefGoogle Scholar
Martiniano, R., Caffell, A., Holst, M., Hunter-Mann, K., Montgomery, J., Müldner, G., McLaughlin, R.L., Teasdale, M.D., van Rheenen, W., Veldink, J.H., van den Berg, L.H., Hardiman, O., Carroll, M., Roskams, S., Oxley, J., Morgan, C., Thomas, M.G., Barnes, I., McDonnell, C., Collins, M.J. & Bradley, D.G.. 2016. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nature Communications 7: article no. 10326. https://doi.org/10.1038/ncomms10326 Google Scholar
McCullagh, J.S., Tripp, J.A. & Hedges, R.E.. 2005. Carbon isotope analysis of bulk keratin and single amino acids from British and North American hair. Rapid Communications in Mass Spectrometry 19: 3227–31. https://doi.org/10.1002/rcm.2150 Google Scholar
McManus-Fry, E., Knecht, R., Dobney, K., Richards, M.P. & Britton, K.. 2016. Dog-human dietary relationships in Yup'ik western Alaska: the stable isotope and zooarchaeological evidence from pre-contact Nunalleq. Journal of Archaeological Science: Reports. First published online 29 April 2016. https://doi.org/10.1016/j.jasrep.2016.04.007 Google Scholar
Milner, N., Craig, O.E., Bailey, G.N., Pedersen, K. & Andersen, S.H.. 2004. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78: 922. https://doi.org/10.1017/S0003598X00092887 Google Scholar
Minagawa, M. & Wada, E.. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimica et Cosmochimica Acta 48: 1135–40. https://doi.org/10.1016/0016-7037(84)90204-7 Google Scholar
Montgomery, J., Beaumont, J., Jay, M., Keefe, K., Gledhill, A.R., Cook, G.T., Dockrill, S.J. & Melton, N.D.. 2013. Strategic and sporadic marine consumption at the onset of the Neolithic: increasing temporal resolution in the isotope evidence. Antiquity 87: 1060–72. https://doi.org/10.1017/S0003598X00049863 Google Scholar
Müldner, G., Montgomery, J., Cook, G., Ellam, R., Gledhill, A. & Lowe, C.. 2009. Isotopes and individuals: diet and mobility among the medieval Bishops of Whithorn. Antiquity 83: 1119–33. https://doi.org/10.1017/S0003598X00099403 Google Scholar
Nagel, M.C. 1982. Frederick Soddy: from alchemy to isotopes. Journal of Chemical Education 59: 739–40. https://doi.org/10.1021/ed059p739 Google Scholar
Nehlich, O. & Richards, M.P.. 2009. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeological and Anthropological Sciences 1: 5975. https://doi.org/10.1007/s12520-009-0003-6 Google Scholar
Nelson, D.E., DeNiro, M.J., Schoeninger, M.J., DePaolo, D.J. & Hare, P.E.. 1986. Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta 50: 1941–49. https://doi.org/10.1016/0016-7037(86)90250-4 Google Scholar
Nicol, H. 1957. The word ‘isotope’. The Lancet 269: 1358–59. https://doi.org/10.1016/S0140-6736(57)91885-8 CrossRefGoogle Scholar
Nitsch, E.K., Humphrey, L.T. & Hedges, R.E.M.. 2011. Using stable isotope analysis to examine the effect of economic change on breastfeeding practices in Spitalfields, London, UK. American Journal of Physical Anthropology 146: 619–28. https://doi.org/10.1002/ajpa.21623 Google Scholar
Pauli, J.N., Steffan, S.A. & Newsome, S.D.. 2015. It is time for IsoBank. BioScience 65: 229–30. https://doi.org/10.1093/biosci/biu230 Google Scholar
Pearson, J.A., Haddow, S.D., Hillson, S.W., Knüsel, C.J., Larsen, C.S. & Sadvari, J.W.. 2015. Stable carbon and nitrogen isotope analysis and dietary reconstruction through the life course at Neolithic Çatalhöyük, Turkey. Journal of Social Archaeology 15: 210–32. https://doi.org/10.1177/1469605315582983 Google Scholar
Pilaar Birch, S.E. & Graham, R.W.. 2015. A stable isotope data repository as part of Neotoma, a paleoecological database. BioScience 65: 953. https://doi.org/10.1093/biosci/biv133 Google Scholar
Pollard, A.M. 2011. Isotopes and impact: a cautionary tale. Antiquity 85: 631–38. https://doi.org/10.1017/S0003598X00068034 Google Scholar
Price, T.D., Meiggs, D., Weber, M.-J. & Pike-Tay, A.. 2017. The migration of Late Pleistocene reindeer: isotopic evidence from Northern Europe. Archaeological and Anthropological Sciences 9: 371–94. https://doi.org/10.1007/s12520-015-0290-z Google Scholar
Reitsema, L.J. 2013. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition. American Journal of Human Biology 25: 445–56. https://doi.org/10.1002/ajhb.22398 CrossRefGoogle ScholarPubMed
Reynard, L.M., Pearson, J.A., Henderson, G.M. & Hedges, R.E.M.. 2013. Calcium isotopes in juvenile milk-consumers. Archaeometry 55: 946–57. https://doi.org/10.1111/j.1475-4754.2012.00715.x Google Scholar
Richards, M.P. & Hedges, R.E.M.. 2003. Variations in bone collagen δ13C and δ15N values of fauna from northwest Europe over the last 40000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 193: 261–67. https://doi.org/10.1016/S0031-0182(03)00229-3 Google Scholar
Richards, M.P. & Schulting, R.J.. 2006. Against the grain? A response to Milner et al. (2004). Antiquity 80: 444–56. https://doi.org/10.1017/S0003598X00093765 Google Scholar
Richards, M.P., Schulting, R.J. & Hedges, R.E.M.. 2003. Sharp shift in diet at onset of Neolithic. Nature 425: 366. https://doi.org/10.1038/425366a Google Scholar
Rowley-Conwy, P. 2011. Westward ho! The spread of agriculture from Central Europe to the Atlantic. Current Anthropology 52: S431–51. https://doi.org/10.1086/658368 Google Scholar
Schoeninger, M.J. 2014. Stable isotope analyses and the evolution of human diets. Annual Review of Anthropology 43: 413–30. https://doi.org/10.1146/annurev-anthro-102313-025935 Google Scholar
Schoeninger, M.J. & DeNiro, M.J.. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48: 625–39. https://doi.org/10.1016/0016-7037(84)90091-7 Google Scholar
Schoeninger, M.J., DeNiro, M.J. & Tauber, H.. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220: 1381–83. https://doi.org/10.1126/science.6344217 Google Scholar
Shaw, H., Montgomery, J., Redfern, R., Gowland, R. & Evans, J.. 2016. Identifying migrants in Roman London using lead and strontium stable isotopes. Journal of Archaeological Science 66: 5768. https://doi.org/10.1016/j.jas.2015.12.001 Google Scholar
Soddy, F. 1913. Intra-atomic charge. Nature 92: 399400. https://doi.org/10.1038/092399c0 Google Scholar
Sponheimer, M., Robinson, T., Ayliffe, L., Roeder, B., Hammer, J., Passey, B., West, A., Cerling, T., Dearing, D. & Ehleringer, J.. 2003. Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology 13: 8087. https://doi.org/10.1002/oa.655 Google Scholar
Stevens, R.E., Jacobi, R., Street, M., Germonpré, M., Conard, N.J., Münzel, S.C. & Hedges, R.E.M.. 2008. Nitrogen isotope analyses of reindeer (Rangifer tarandus), 45,000 BP to 900 BP: palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 262: 3245. https://doi.org/10.1016/j.palaeo.2008.01.019 Google Scholar
Styring, A.K., Sealy, J.C. & Evershed, R.P.. 2010. Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochimica et Cosmochimica Acta 74: 241–51. https://doi.org/10.1016/j.gca.2009.09.022 Google Scholar
Szpak, P., Metcalfe, J.Z. & Macdonald, R.A.. 2017. Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports 13: 609–16. https://doi.org/10.1016/j.jasrep.2017.05.07 Google Scholar
Thornton, E.K. 2011. Reconstructing ancient Maya animal trade through strontium isotope (87Sr/86Sr) analysis. Journal of Archaeological Science 38: 3254–63. https://doi.org/10.1016/j.jas.2011.06.035 Google Scholar
Tieszen, L.L., Boutton, T.W., Tesdahl, K.G. & Slade, N.A.. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 3237. https://doi.org/10.1007/BF00379558 Google Scholar
Towers, J., Gledhill, A., Bond, J. & Montgomery, J.. 2014. An investigation of cattle birth seasonality using δ13C and δ18O profiles within first molar enamel. Archaeometry 56: 208–36. https://doi.org/10.1111/arcm.12055 Google Scholar
Tuross, N., Fogel, M.L. & Hare, P.E.. 1988. Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52: 929–35. https://doi.org/10.1016/0016-7037(88)90364-X Google Scholar
Tütken, T., Vennemann, T.W. & Pfretzschner, H.-U.. 2011. Nd and Sr isotope compositions in modern and fossil bones—proxies for vertebrate provenance and taphonomy. Geochimica et Cosmochimica Acta 75: 5951–70. https://doi.org/10.1016/j.gca.2011.07.024 Google Scholar
van der Merwe, N.J. & Vogel, J.C.. 1978. 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276: 815–16. https://doi.org/10.1038/276815a0 Google Scholar
van Klinken, G.J. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26: 687–95. https://doi.org/10.1006/jasc.1998.0385 Google Scholar
Vogel, J.C. 1978. Isotopic assessment of the dietary habits of ungulates. South African Journal of Science 74: 298301.Google Scholar
Vogel, J.C. & van der Merwe, N.J.. 1977. Isotopic evidence for early maize cultivation in New York State. American Antiquity 42: 238–42. https://doi.org/10.2307/278984 Google Scholar
Warinner, C., Speller, C. & Collins, M.J.. 2015. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philosophical Transactions of the Royal Society of London B: Biological Sciences 370: article no. 20130376. https://doi.org/10.1098/rstb.2013.0376 Google Scholar
Webb, E.C., Honch, N.V., Dunn, P.J.H., Eriksson, G., Lidén, K. & Evershed, R.P.. 2015. Compound-specific amino acid isotopic proxies for detecting freshwater resource consumption. Journal of Archaeological Science 63: 104–14. https://doi.org/10.1016/j.jas.2015.08.001 Google Scholar
White, C.D. & Longstaffe, F.J.. 2016. Stable isotopes and selective forces: examples in biocultural and environmental anthropology, in Zuckerman, M.K. & Martin, D.L. (ed.) New directions in biocultural anthropology: 241–57. Hoboken (NJ): Wiley Blackwell. https://doi.org/10.1002/9781118962954.ch12 Google Scholar
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I. & Grün, R.. 2014. The IRHUM (Isotopic Reconstruction of Human Migration) database—bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth System Science Data 6: 117–22. https://doi.org/10.5194/essd-6-117-2014 Google Scholar
Willmes, M., Kinsley, L., Moncel, M.H., Armstrong, R.A., Aubert, M., Eggins, S. & Grün, R.. 2016. Improvement of laser ablation in situ micro-analysis to identify diagenetic alteration and measure strontium isotope ratios in fossil human teeth. Journal of Archaeological Science 70: 102–16. https://doi.org/10.1016/j.jas.2016.04.017 Google Scholar
Zazzo, A., Balasse, M. & Patterson, W.P.. 2006. The reconstruction of mammal individual history: refining high-resolution isotope record in bovine tooth dentine. Journal of Archaeological Science 33: 1177–87. https://doi.org/10.1016/j.jas.2005.12.006 Google Scholar
Supplementary material: PDF

Britton supplementary material

Britton supplementary material 1

Download Britton supplementary material(PDF)
PDF 280.4 KB