Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T18:51:43.618Z Has data issue: false hasContentIssue false

Using radiocarbon: an update

Published online by Cambridge University Press:  02 January 2015

Sheridan Bowman*
Affiliation:
Department of Scientific Research, British Museum, London WC1B 3DG, England

Extract

A note in the 1990 ANTIQUITY volume dealt with four issues crucial to the successful use of radiocarbon in archaeology (Bowman & Balaam 1990): selection and characterization of material and context; determination of the radiocarbon result and error term; interpretation and publication; and strategic resourcing. Since then much has been published, particularly on quality control of radiocarbon measurements (‘determination’), and on the calibration of radiocarbon results (‘interpretation’). Here is an update.

Type
Miscellaneous
Copyright
Copyright © Antiquity Publications Ltd. 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambers, J., Bowman, S. Gibson, A. & Kinnes, I. 1992. 14C results for the British Beakers, Radiocarbon 34(3): 916–27.CrossRefGoogle Scholar
Barbetti, M., Bird, T. Dolezal, G. Taylor, G. Francey, R. Cook, E. & Peterson, M. Forthcoming. Radiocarbon variations from Tasmanian conifers: results from three early Holocene logs, Proceedings of the 15th International Radiocarbon Conference, Radiocarbon.Google Scholar
Bowman, S.G.E. & Leese, M.N. In press. Radiocarbon calibration: current issues and their relevance to archaeology, American Journal of Archaeology (accepted October 1993).Google Scholar
Bowman, S.G.E. 1990. Radiocarbon dating. London: British Museum Publications.Google Scholar
Bowman, S.G.E. & Balaam, N. 1990. Using radiocarbon, Antiquity 64: 315–18.CrossRefGoogle Scholar
Bronk Ramsey, C. Forthcoming. Radiocarbon calibration and analysis of stratigraphy, Proceedings of the 15th International Radiocarbon Conference, Radiocarbon. (Programs available from Oxford AMS Unit, 6 Keble Road, Oxford oxl 3QJ, England.)Google Scholar
Bruns, M., Levin, I. Münnich, K.O. Hubberton, H.W. & Flllipakis, S. 1980. Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material, Radiocarbon 22(2): 532*#x2013;6.CrossRefGoogle Scholar
Buck, C.E.,Kenworthy, J.B. Litton, C.D. & Smith, A.F.M. 1991. Combining archaeological and radiocarbon information: a Bayesian approach to calibration, Antiquity 65: 808–21.Google Scholar
Buck, C.E., Litton, C.D. & Scott, E.M. 1994. Making the most of radiocarbon dating: some statistical considerations, Antiquity 68: 252–63.Google Scholar
Buck, C.E., Litton, C.D. & Smith, A.F.M. 1992. Calibration of radiocarbon results pertaining to related archaeological events, Journal of Archaeological Sciences 19: 497512.Google Scholar
Clark, R.M. 1975. A calibration curve for radiocarbon dates, Antiquity 49: 251–66.Google Scholar
De Vries, H.L. 1958. Variation in concentration of radiocarbon with time and location on earth, Koninkl. Nederlandse Akademie van Wetenschappen —Amsterdam Series B 61(2): 19.Google Scholar
INTERNATIONAL STUDY GROUP. 1982. An inter-laboratory comparison of radiocarbon measurements in tree rings, Nature 298: 619–23.CrossRefGoogle Scholar
Klein, J., Lerman, J.C Damon, P.E. & Ralph, E.K. 1982. Calibration of radiocarbon dates: tables based on the consensus data of the Workshop on calibrating the radiocarbon time scale, Radiocarbon 24(2): 103– 50.Google Scholar
Levin, I., Kromer, B. Schoch-Fischer, H. Bruns, M. Münnich, M. Berdau, D. Vogel, J.G. Münnich, K.O. 1985. 25 years of tropospheric 14C observations in Central Europe, Radiocarbon 27(1): 119.Google Scholar
Long, A. & Kalin, R.M. 1990. A suggested quality assurance protocol for radiocarbon dating laboratories, Radiocarbon 32(3): 329–34.Google Scholar
Mccormac, F.G., Baillie, M.G.L. & Pllcher, J.R. Forthcoming. Location dependent 14C variations, Proceedings of the 15th International Radiocarbon Conference, Radiocarbon.Google Scholar
Mook, W.G. 1986. Recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference, Radiocarbon 28(2A): 799.CrossRefGoogle Scholar
Niklaus, T.R., Bonani, G. Simonius, M. Suter, M. & Wölfli, W. 1992. CalibETH: An interactive computer program for the calibration of radiocarbon dates, Radiocarbon 34(3): 483–92.Google Scholar
Pearson, G.W. 1987. HOW to cope with calibration, Antiquity 61: 98103.Google Scholar
Pearson, G.W., Pllcher, J.R. Baillie, M.G.L. Corbett, D.M. & Qua, F. 1986. High-precision 14C measurement of Irish Oaks to show the natural 14C variations from AD 1840-5210 BC, Radiocarbon 28(2B): 911–34.Google Scholar
Pearson, G.W. & Qua, F. 1993. High-precision 14C measurement of Irish Oaks to show the natural 14C variations from AD 1840-5000 BC: a correction, Radiocarbon 35(1): 105–24.Google Scholar
Pearson, G.W. & Stuiver, M. 1986. High-precision calibration of the radiocarbon time scale, 500-2500 BC, Radiocarbon 28(2B): 839–62.Google Scholar
Pearson, G.W. & Stuiver, M. 1993. High-precision bidecadal calibration of the radiocarbon time scale, 500-2500 BC, Radiocarbon 35(1): 2534.CrossRefGoogle Scholar
Reimer, P. 1994. Radiocarbon calibration news, INQUA Commission for the Study of the Holocene Newsletter 11: 21–3.Google Scholar
Rozanski, K. 1991. Report of the consultants’ group meeting on C-l 4 reference materials for radiocarbon laboratories. Vienna: International Atomic Energy Agency.Google Scholar
Scott, E.M., Harkness, D.D. Cook, G.T. Miller, B.F. Begg, F.H. & Holton, L. Forthcoming. The TIRI project: a status report, Proceedings of the 15th International Radiocarbon Conference, Radiocarbon.Google Scholar
Stuiver, M. & Becker, B. 1993. High-precision decadal calibration of the radiocarbon time scale, AD 19506000 BC, Radiocarbon 35(1): 3566.CrossRefGoogle Scholar
Stuiver, M. & Pearson, G.W. 1986. High-precision calibration of the radiocarbon time scale, AD 1950-500 BC, Radiocarbon 28(2B): 805–38.Google Scholar
Stuiver, M. & Pearson, G.W. 1993. High-precision bidecadal calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC, Radiocarbon 35(1): 124.Google Scholar
Stuiver, M. & Reimer, P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program, Radiocarbon 35(1): 215–30.CrossRefGoogle Scholar
Suess, H.E. 1970. Bristlecone-pine calibration at the radiocarbon time-scale 5200 BC to the present, in Olsson, I. (ed.), Radiocarbon variations and absolute chronology: 303–12. Stockholm: Almqvist & Wiksell.Google Scholar
Van Der Plight, H. 1993. The Groningen radiocarbon calibration program, Radiocarbon 35(1): 231–8.CrossRefGoogle Scholar
Vogel, J.C., Fuls, A.M. Vlssar, E. & Becker, B. 1993. Pretoria calibration curve for short-lived samples, 19303350 BC, Radiocarbon 35(1): 7386.Google Scholar
Ward, G.K. & Wilson, S.R. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique, Archaeometry 20(1): 1931.Google Scholar