No CrossRef data available.
Article contents
ASYMPTOTICS OF A GAUSS HYPERGEOMETRIC FUNCTION WITH TWO LARGE PARAMETERS: A NEW CASE
Published online by Cambridge University Press: 10 December 2019
Abstract
Asymptotic expansions of the Gauss hypergeometric function with large parameters, $F(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D716}_{1}\unicode[STIX]{x1D70F},\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D716}_{2}\unicode[STIX]{x1D70F};\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D716}_{3}\unicode[STIX]{x1D70F};z)$ as $|\unicode[STIX]{x1D70F}|\rightarrow \infty$, are known for many special cases, but not for one that the author encountered in recent work on fluid mechanics: $\unicode[STIX]{x1D716}_{2}=0$ and $\unicode[STIX]{x1D716}_{3}=\unicode[STIX]{x1D716}_{1}z$. This paper gives the leading term for that case if $\unicode[STIX]{x1D6FD}$ is not a negative integer and $z$ is not on the branch cut $[1,\infty )$, and it shows how subsequent terms can be found.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Australian Mathematical Society 2019