Published online by Cambridge University Press: 17 February 2009
Ronney and Sivashinsky [2] and Buckmaster and Lee [1] have proposed a certain non-autonomous first order ordinary differential equation as a simple model for an expanding spherical flame front in a zero-gravity environment. Here we supplement their preliminary numerical calculations with some analysis and further numerical work. The results show that the solutions either correspond to quenching, or to steady flame front propagation, or to rapid expansion of the flame front, depending on two control parameters. A crucial component of our analysis is the construction of a barrier orbit which divides the phase plane into two parts. The location of this barrier orbit then determines the fate of orbits in the phase plane.