Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T13:48:53.905Z Has data issue: false hasContentIssue false

ANALYTICAL REPRESENTATIONS OF REGULAR-SHAPED NANOSTRUCTURES FOR GAS STORAGE APPLICATIONS

Published online by Cambridge University Press:  02 September 2015

WEI-XIAN LIM
Affiliation:
Nanomechanics Group, School of Mathematical Sciences, University of Adelaide, South Australia 5005, Australia
AARON W. THORNTON*
Affiliation:
CSIRO Materials Science and Engineering, Private Bag 33, Clayton South MDC, Victoria 3169, Australia email aaron.thornton@csiro.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nanospace governs the dynamics of physical, chemical, material and biological systems, and the facility to model it with analytical formulae provides an essential tool to address some of the worlds’ key problems such as gas purification, separation and storage. This paper aims to provide some analytical models to exploit building blocks representing various geometric shapes that describe nanostructures. In order to formulate the various building blocks, we use the continuous approximation which assumes a uniform distribution of atoms on their surfaces. We then calculate the potential energy of the van der Waals interaction between an atom and the structure to evaluate the location of the atom where the potential energy is at its minimum. We provide applications of the analytical models for some real structures where more than one type of building block is required.

Type
Research Article
Copyright
© 2015 Australian Mathematical Society 

References

Adisa, O. O., Cox, B. J. and Hill, J. M., “Encapsulation of methane molecules into carbon nanotubes”, Physica B 406 (2011) 8893; doi:10.1016/j.physb.2010.10.027.CrossRefGoogle Scholar
Bossel, U., “Does a hydrogen economy make sense?”, Proc. IEEE 94 (2006) 18261837 doi:10.1109/JPROC.2006.883715.CrossRefGoogle Scholar
Cheng, H. M., Yang, Q. H. and Liu, C., “Hydrogen storage in carbon nanotubes”, Carbon 39 (2001) 14471454; doi:10.1016/S0008-6223(00)00306-7.CrossRefGoogle Scholar
Cox, B. J., Thamwattana, N. and Hill, J. M., “Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies”, Proc. R. Soc. Lond. A 463 (2007) 461477 doi:10.1098/rspa.2006.1771.CrossRefGoogle Scholar
Lennard-Jones, J. E., “Cohesion”, Proc. Phys. Soc. 43 (1931) 461482 doi:10.1088/0959-5309/43/5/301.CrossRefGoogle Scholar
Li, J.-R., Kuppler, R. J. and Zhou, H.-C., “Selective gas adsorption and separation in metal-organic frameworks”, Chem. Soc. Rev. 38 (2009) 14771504; doi:10.1039/b802426j.CrossRefGoogle ScholarPubMed
Lim, W.-X., Thornton, A. W., Hill, A. J., Cox, B. J., Hill, J. M. and Hill, M. R., “High performance hydrogen storage from Be-BTB metal-organic framework at room temperature”, Langmuir 29 (2013) 85248533; doi:10.1021/la401446s.CrossRefGoogle ScholarPubMed
Lowell, S., Shields, J. E., Thomas, M. A. and Thommes, M., Characterization of porous solids and powders: surface area, pore size and density, Volume 16 of Particle Technology Series (Kluwer Academic, Dordrecht, 2004).CrossRefGoogle Scholar
Murray, L. J., Dincă, M. and Long, J. R., “Hydrogen storage in metal-organic frameworks”, Chem. Soc. Rev. 38 (2009) 12941314; doi:10.1039/b802256a.CrossRefGoogle ScholarPubMed
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A. and Skiff, W. M., “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Amer. Chem. Soc. 114 (1992) 1002410035; doi:10.1021/ja00051a040.CrossRefGoogle Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. and Yaghi, O. M., “Hydrogen storage in microporous metal–organic frameworks”, Science 300 (2003) 11271129 doi:10.1126/science.1083440.CrossRefGoogle ScholarPubMed
Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G., “The US Department of Energy’s national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements”, Catal. Today 120 (2007) 246256; doi:10.1016/j.cattod.2006.09.022.CrossRefGoogle Scholar
Thornton, A. W., Nairn, K. M., Hill, J. M., Hill, A. J. and Hill, M. R., “Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage”, J. Amer. Chem. Soc. 131 (2009) 1066210669; doi:10.1021/ja9036302.CrossRefGoogle ScholarPubMed
Tran-Duc, T., Thamwattana, N., Cox, B. J. and Hill, J. M., “Adsorption of polycyclic aromatic hydrocarbons on graphite surfaces”, Comput. Mater. Sci. 49 (2010) S307S312 doi:10.1016/j.commatsci.2010.03.001.CrossRefGoogle Scholar
Tran-Duc, T., Thamwattana, N., Cox, B. J. and Hill, J. M., “Modelling the interaction in a benzene dimer”, Philos. Mag. 90 (2010) 17711785; doi:10.1080/14786430903476349.CrossRefGoogle Scholar
Watanabe, T. and Sholl, D. S., “Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials”, Langmuir 28 (2012) 1411414128; doi:10.1021/la301915s.CrossRefGoogle ScholarPubMed