No CrossRef data available.
Published online by Cambridge University Press: 12 May 2016
We consider a coupled, logistic predator–prey system with delay. Mainly, by choosing the delay time ${\it\tau}$ as a bifurcation parameter, we show that Hopf bifurcation can occur as the delay time ${\it\tau}$ passes some critical values. Based on the normal-form theory and the centre manifold theorem, we also derive formulae to obtain the direction, stability and the period of the bifurcating periodic solution at critical values of ${\it\tau}$. Finally, numerical simulations are investigated to support our theoretical results.