Hostname: page-component-7dd5485656-pnlb5 Total loading time: 0.001 Render date: 2025-10-24T22:02:40.736Z Has data issue: false hasContentIssue false

CONSTRAINED FRACTIONAL OPTIMIZATION PROBLEMS AND CORRESPONDING SADDLE-POINT OPTIMALITY CRITERIA

Published online by Cambridge University Press:  23 October 2025

OCTAVIAN POSTAVARU
Affiliation:
Center for Research and Training in Innovative Techniques of Applied Mathematics in Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; e-mail: opostavaru@linuxmail.org, antonela2222@yahoo.com
ANTONELA TOMA
Affiliation:
Center for Research and Training in Innovative Techniques of Applied Mathematics in Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; e-mail: opostavaru@linuxmail.org, antonela2222@yahoo.com
SAVIN TREANŢĂ*
Affiliation:
Department of Applied Mathematics, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania Fundamental Sciences Applied in Engineering – Research Center (SFAI), National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania

Abstract

This research introduces an adapted multidimensional fractional optimal control problem, developed from a newly established framework that combines first-order partial differential equations (PDEs) with inequality constraints. We methodically establish and demonstrate the optimality conditions relevant to this framework. Moreover, we illustrate that, under certain generalized convexity assumptions, there exists a correspondence between the optimal solution of the multidimensional fractional optimal control problem and a saddle point related to the Lagrange functional of the revised formulation. To emphasize the significance and practical implications of our findings, we present several illustrative examples.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of the Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Caputo, M. and Mainardi, F., “A new dissipation model based on memory mechanism”, Pure Appl. Geophys. 91 (1971) 134147; doi:10.1007/BF00879562.CrossRefGoogle Scholar
Casas, E. and Kunisch, K., “Optimal control of semilinear parabolic equations with non-smooth pointwise-integral control constraints in time-space”, Appl. Math. Optim. 85 (2022) article ID: 12; doi:10.1007/s00245-022-09850-7.CrossRefGoogle Scholar
Casas, E. and Yong, J., “Optimal control of a parabolic equation with memory”, ESAIM Control Optim. Calc. Var. 29 (2023) article ID: 23; doi:10.1051/cocv/2023013.CrossRefGoogle Scholar
Corella, A. D., Jork, N. and Veliov, V. M., “On the solution stability of parabolic optimal control problems”, Comput. Optim. Appl. 86 (2023) 10351079; doi:10.1007/s10589-023-00473-4.CrossRefGoogle ScholarPubMed
Court, S., “A hybrid optimal control problem constrained with hyperelasticity and the global injectivity condition”, Optim. Methods Softw. (2024) 149; doi:10.1080/10556788.2024.2400501.CrossRefGoogle Scholar
Endtmayer, B., Langer, U., Neitzel, I., Wick, T. and Wollner, W., “Multigoal-oriented optimal control problems with nonlinear PDE constraints”, Comput. Math. Appl. 79 (2020) 30013026; doi:10.1016/j.camwa.2020.01.005.CrossRefGoogle Scholar
Fuica, F., Lepe, F., Otárola, E. and Quero, D., “An optimal control problem for the Navier–Stokes equations with point sources”, J. Optim. Theory Appl. 196 (2023) 590616; doi:10.1007/s10957-022-02148-2.CrossRefGoogle Scholar
John, F., “Extremum problems with inequalities as subsidiary conditions”, in: Traces and emergence of nonlinear programming (eds G. Giorgi and T. Kjeldsen) (Birkhäuser Basel, Basel, 2014); 197215; doi:10.1007/978-3-0348-0439-4.CrossRefGoogle Scholar
Li, Y., Chen, Y. and Podlubny, I., “Fractional order dynamic models for soft robotic manipulators”, Nonlinear Dyn. 70 (2012) 907917.Google Scholar
Mititelu, S. and Treanţă, S., “Efficiency conditions in vector control problems governed by multiple integrals”, J. Appl. Math. Comput. 57 (2018) 647665; doi:10.1007/s12190-017-1126-z.CrossRefGoogle Scholar
Na, J., Kim, S., et al., “A fractional viscoelastic model of hydrogel-based tissue scaffolds under dynamic loading”, Biomech. Model. Mechanobiol. 16 (2017) 263273.Google Scholar
Pedregal, P., “Optimal feedback control, linear first-order PDE systems, and obstacle problems”, J. Frank. Inst. 354 (2017) 32253236; doi:10.1016/j.jfranklin.2017.02.023.CrossRefGoogle Scholar
Podlubny, I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Volume 198 of Math. Sci. Eng. (Academic Press, San Diego, CA, 1998); https://www.sciencedirect.com/book/9780125588409.Google Scholar
Raymond, J.-P., “Feedback boundary stabilization of the two-dimensional Navier–Stokes equations”, SIAM J. Control Optim. 45 (2006) 790828; doi:10.1137/050628726.CrossRefGoogle Scholar
Toma, A. and Postavaru, O., “Fractional complex Euler–Lagrange equation: nonconservative systems”, Fractal Fract. 7 (2023) article ID: 799; https://www.mdpi.com/2504-3110/7/11/799.10.3390/fractalfract7110799CrossRefGoogle Scholar
Treanţă, S., “Constrained variational problems governed by second-order Lagrangians”, Appl. Anal. 99 (2018) 14671484; doi:10.1080/00036811.2018.1538501.CrossRefGoogle Scholar
Treanţă, S., “On a new class of vector variational control problems”, Numer. Funct. Anal. Optim. 39 (2018) 15941603; doi:10.1080/01630563.2018.1488142.CrossRefGoogle Scholar
Treanţă, S., “Higher-order Hamilton dynamics and Hamilton–Jacobi divergence PDE”, Comput. Math. Appl. 75 (2018) 547560; https://www.sciencedirect.com/science/article/pii/S0898122117305965.10.1016/j.camwa.2017.09.033CrossRefGoogle Scholar
Treanţă, S., “On a modified optimal control problem with first-order PDE constraints and the associated saddle-point optimality criterion”, Eur. J. Control 51 (2020) 19; doi:10.1016/j.ejcon.2019.07.003.CrossRefGoogle Scholar
Treanţă, S. and Arana-Jiménez, M., “KT-pseudoinvex multidimensional control problem”, Optim. Control Appl. Methods 39 (2018) 12911300; doi:10.1002/oca.2410.CrossRefGoogle Scholar
Treanţă, S. and Arana-Jiménez, M., “On generalized KT-pseudoinvex control problems involving multiple integral functionals”, Eur. J. Control 43 (2018) 3945; doi:10.1016/j.ejcon.2018.05.004.CrossRefGoogle Scholar
Tröltzsch, F., Optimal control of partial differential equations: theory, methods and applications, Volume 112 of AMS Grad. Stud. Math. (American Mathematical Society, Providence, RI, 2010); ISBN: 978-1-4704-7644-1.Google Scholar
Wang, H., Yu, C. and Song, Y., “An augmented Lagrangian method for state constrained linear parabolic optimal control problems”, J. Optim. Theory Appl. 203 (2024) 196226; doi:10.1007/s10957-024-02494-3.CrossRefGoogle Scholar