Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:55:48.230Z Has data issue: false hasContentIssue false

IDEAL PLANAR FLUID FLOW OVER A SUBMERGED OBSTACLE: REVIEW AND EXTENSION

Published online by Cambridge University Press:  25 October 2021

LAWRENCE K. FORBES*
Affiliation:
School of Natural Sciences, University of Tasmania, HobartTAS 7001, Australia; e-mail: stephen.walters@utas.edu.au.
STEPHEN J. WALTERS
Affiliation:
School of Natural Sciences, University of Tasmania, HobartTAS 7001, Australia; e-mail: stephen.walters@utas.edu.au.
GRAEME C. HOCKING
Affiliation:
Mathematics & Statistics, Murdoch University, MurdochWA6150, Australia; e-mail: g.hocking@murdoch.edu.au.

Abstract

A classical problem in free-surface hydrodynamics concerns flow in a channel, when an obstacle is placed on the bottom. Steady-state flows exist and may adopt one of three possible configurations, depending on the fluid speed and the obstacle height; perhaps the best known has an apparently uniform flow upstream of the obstacle, followed by a semiinfinite train of downstream gravity waves. When time-dependent behaviour is taken into account, it is found that conditions upstream of the obstacle are more complicated, however, and can include a train of upstream-advancing solitons. This paper gives a critical overview of these concepts, and also presents a new semianalytical spectral method for the numerical description of unsteady behaviour.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This is a contribution to the series of invited papers by past ANZIAM medallists (Editorial, Issue 52(1)). Lawrence K. Forbes was awarded the 2020 ANZIAM medal.

References

Anderson, J. D. Jr, Modern compressible flow with historical perspective, 2nd edn (McGraw-Hill, Boston, MA, 1990).Google Scholar
Atkinson, K. E., An introduction to numerical analysis (Wiley, New York, 1978).Google Scholar
Belward, S. R. and Forbes, L. K., “Interfacial waves and hydraulic falls: some applications to atmospheric flows in the lee of mountains”, J. Engrg. Math. 29 (1995) 161179; doi:10.1007/BF00051741.CrossRefGoogle Scholar
Binder, B. J., “Steady two-dimensional free-surface flow past disturbances in an open channel: solutions of the Korteweg–De Vries equation and analysis of the weakly nonlinear phase space”, Fluids 4 (2019) 24; doi:10.3390/fluids4010024.CrossRefGoogle Scholar
Binder, B. J., Dias, F. and Vanden-Broeck, J.-M., “Influence of rapid changes in a channel bottom on free-surface flows”, IMA J. Appl. Math. 73 (2008) 254273; doi:10.1093/imamat/hxm049.CrossRefGoogle Scholar
Chanson, H., “Development of the Bélanger equation and backwater equation by Jean-Baptiste Bélanger (1828)”, J. Hydraul. Eng. 135 (2009) 159163; doi:10.1061/(ASCE)0733-9429(2009)135:3(159).CrossRefGoogle Scholar
Chapman, S. J. and Vanden-Broeck, J.-M., “Exponential asymptotics and gravity waves”, J. Fluid Mech. 567 (2006) 299326; doi:10.1017/S0022112006002394.CrossRefGoogle Scholar
Chardard, F., Dias, F., Nguyen, H. Y. and Vanden-Broeck, J.-M., “Stability of some stationary solutions to the forced KdV equations with one or two bumps”, J. Engrg. Math. 70 (2011) 175189; doi:10.1007/s10665-010-9424-6.CrossRefGoogle Scholar
Choi, J. W., “Free-surface waves over a depression”, Bull. Aust. Math. Soc. 65 (2002) 329335; doi:10.1017/S0004972700020360.CrossRefGoogle Scholar
Cole, S. L., “Transient waves produced by flow past a bump”, Wave Motion 7 (1985) 579587; doi:10.1016/0165-2125(85)90035-6.CrossRefGoogle Scholar
Ertekin, R. C., Webster, W. C. and Wehausen, J. V., “Ship-generated solitons”, Proc. 15th Symp. Naval Hydrodynam., Hamburg (1984) 347–364; available at https://www.researchgate.net/publication/258630526_Ship-generated_solitons.Google Scholar
Ertekin, R. C., Webster, W. C. and Wehausen, J. V., “Waves caused by a moving disturbance in a shallow channel of finite width”, J. Fluid Mech. 169 (1986) 275292; doi:10.1017/S0022112086000630.CrossRefGoogle Scholar
Forbes, L. K., “On the wave resistance of a submerged semi-elliptical body”, J. Engrg. Math. 15 (1981) 287298; doi:10.1007/BF00042925.CrossRefGoogle Scholar
Forbes, L. K., “Non-linear, drag-free flow over a submerged semi-elliptical body”, J. Engrg. Math. 16 (1982) 171180; doi:10.1007/BF00042552.CrossRefGoogle Scholar
Forbes, L. K., “Irregular frequencies and iterative methods in the solution of steady surface-wave problems in hydrodynamics”, J. Engrg. Math. 18 (1984) 299313; doi:10.1007/BF00042844.CrossRefGoogle Scholar
Forbes, L. K., “Critical free-surface flow over a semi-circular obstruction”, J. Engrg. Math. 22 (1988) 313; doi:10.1007/BF00044362.CrossRefGoogle Scholar
Forbes, L. K., Chen, M. J. and Trenham, C. E., “Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow”, J. Comput. Phys. 221 (2007) 269287; doi:10.1016/j.jcp.2006.06.010.CrossRefGoogle Scholar
Forbes, L. K. and Hocking, G. C., “Flow caused by a point sink in a fluid having a free surface”, ANZIAM J. 32 (1990) 231249; doi:10.1017/S0334270000008456.Google Scholar
Forbes, L. K. and Schwartz, L. W., “Free-surface flow over a semicircular obstruction”, J. Fluid Mech. 114 (1982) 299314; doi:10.1017/S0022112082000160.CrossRefGoogle Scholar
Fridman, G., “Planing plate with stagnation zone in the spoiler vicinity”, J. Engrg. Math. 70 (2011) 225237; doi:10.1007/S10665-010-9399-3.CrossRefGoogle Scholar
Grimshaw, R., “Transcritical flow past an obstacle”, ANZIAM J. 52 (2010) 226; doi:10.1017/S1446181111000599.CrossRefGoogle Scholar
Grimshaw, R. H. J. and Maleewong, M., “Transcritical flow over two obstacles: forced Korteweg–De Vries framework”, J. Fluid Mech. 809 (2016) 918940; doi:10.1017/jfm.2016.722.CrossRefGoogle Scholar
Helfrich, K. R. and Melville, W. K., “Long nonlinear internal waves”, Annu. Rev. Fluid Mech. 38 (2006) 395425; doi:10.1146/annurev.fluid.38.050304.092129.CrossRefGoogle Scholar
Henderson, F. M., Open channel flow (Macmillan, New York, 1966).Google Scholar
Herterich, J. G. and Dias, F., “Potential flow over a submerged rectangular obstacle: consequences for initiation of boulder motion”, European J. Appl. Math. 31 (2020) 646681; doi:10.1017/S0956792519000214.CrossRefGoogle Scholar
Higgins, P. J., Read, W. W. and Belward, S. R., “A series-solution method for free-boundary problems arising from flow over topography”, J. Engrg. Math. 54 (2006) 345358; doi:10.1007/s10665-006-9039-0.CrossRefGoogle Scholar
Hocking, G. C., Holmes, R. J. and Forbes, L. K., “A note on waveless subcritical flow past a submerged semi-ellipse”, J. Engrg. Math. 81 (2013) 18; doi:10.1007/s10665-012-9594-5.CrossRefGoogle Scholar
Holmes, R. J. and Hocking, G. C., “A note on waveless subcritical flow past symmetric bottom topography”, European J. Appl. Math. 28 (2017) 562575; doi:10.1017/S0956792516000449.CrossRefGoogle Scholar
Holmes, R. J., Hocking, G. C., Forbes, L. K. and Baillard, N. Y., “Waveless subcritical flow past symmetric bottom topography”, European J. Appl. Math. 24 (2013) 213230; doi:10.1017/S0956792512000381.CrossRefGoogle Scholar
Keeler, J. S., Binder, B. J. and Blyth, M. G., “On the critical free-surface flow over localised topography”, J. Fluid Mech. 832 (2017) 7396; doi:10.1017/jfm.2017.639.CrossRefGoogle Scholar
King, A. C. and Bloor, M. I. G., “Free-surface over a step”, J. Fluid Mech. 182 (1987) 193208; doi:10.1017/S0022112087002301.CrossRefGoogle Scholar
King, A. C. and Bloor, M. I. G., “Free-surface flow of a stream obstructed by an arbitrary bed topography”, Quart. J. Mech. Appl. Math. 43 (1990) 87106; doi:10.1093/qjmam/43.1.87.CrossRefGoogle Scholar
Kostyukov, A. A., Theory of ship waves and wave resistance (Effective Communications Inc., Iowa City, IA, 1968), translated by M. Oppenheimer, Jr; available at http://resolver.tudelft.nl/uuid:0572a37e-87d4-40ca-bb25-88db72631ac1.Google Scholar
Lamb, S. H., Hydrodynamics, 6th edn (Dover Publications, New York, 1932).Google Scholar
Lee, S.-J., Yates, G. T. and Wu, T. Y., “Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances”, J. Fluid Mech. 199 (1989) 569593; doi:10.1017/S0022112089000492.CrossRefGoogle Scholar
Lustri, C. J., Koens, L. and Pethiyagoda, R., “A note on the Stokes phenomenon in flow under an elastic sheet”, Philos. Trans. Roy. Soc. A 378 (2020) 20190530; doi:10.1098/rsta.2019.0530.CrossRefGoogle ScholarPubMed
Lustri, C. J., McCue, S. W. and Binder, B. J., “Free surface flow past topography: a beyond-all-orders approach”, European J. Appl. Math. 23 (2012) 441467; doi:10.1017/S0956792512000022.CrossRefGoogle Scholar
Marchant, T. R. and Smyth, N. F., “The extended Korteweg–De Vries equation and the resonant flow of a fluid over topography”, J. Fluid Mech. 221 (1990) 263288; doi:10.1017/S0022112090003561.CrossRefGoogle Scholar
Peregrine, D. H., “A line source beneath a free surface,” Univ. Wisconsin, Math. Res. Center: Tech. Summ. Report 1248 (1972) Accession Number AD0753140; available at https://apps.dtic.mil/sti/citations/AD0753140.Google Scholar
Pethiyagoda, R., Moroney, T. J. and McCue, S. W., “Efficient computation of two-dimensional steady free-surface flows”, Internat. J. Numer. Methods Fluids 86 (2018) 607624; doi:10.1002/fld.4469.CrossRefGoogle Scholar
Sharman, R. D. and Wurtele, M. G., “Ship waves and lee waves”, J. Atmosph. Sci. 40 (1983) 396427; doi:10.1175/1520-0469(1983)040<0396:SWALW>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Shen, S. S. P. and Shen, M. C., “On the limit of subcritical free-surface flow over an obstruction”, Acta Mech. 82 (1990) 225230; doi:10.1007/BF01173630.CrossRefGoogle Scholar
Stoker, J. J., Water waves: the mathematical theory with applications (Wiley-Interscience, New York, 1957).Google Scholar
Tam, A., Yu, Z., Kelso, R. M. and Binder, B. J., “Predicting channel bed topography in hydraulic falls”, Phys. Fluids 27 (2015) 112106; doi:10.1063/1.4935419.CrossRefGoogle Scholar
Terziev, M., Tezdogan, T., Oguz, E., Gourlay, T., Demirel, Y. K. and Incecik, A., “Numerical investigation of the behaviour and performance of ships advancing through restricted shallow waters”, J. Fluids Structures 76 (2018) 185215; doi:10.1016/j.jfluidstructs.2017.10.003.CrossRefGoogle Scholar
Tuck, E. O., “Hydrodynamic problems of ships in restricted waters”, Annu. Rev. Fluid Mech. 10 (1978) 3346; doi:10.1146/annurev.fl.10.010178.000341.CrossRefGoogle Scholar
Vanden-Broeck, J.-M., “Free-surface flow over an obstruction in a channel”, Phys. Fluids 30 (1987) 23152317; doi:10.1063/1.866121.CrossRefGoogle Scholar
Vanden-Broeck, J.-M., Gravity–capillary free-surface flows, Cambridge Monogr. on Mech. (Cambridge University Press, Cambridge, 2010); doi:10.1017/CBO9780511730276.CrossRefGoogle Scholar
Vanden-Broeck, J.-M., Schwartz, L. W. and Tuck, E. O., “Divergent low-Froude-number series expansion of nonlinear free-surface flow problems”, Proc. Roy. Soc. Lond. A 361 (1978) 207224; doi:10.1098/rspa.1978.0099.Google Scholar
von Winckel, G., lgwt.m, at: Matlab file exchange website (2004), available at http://www. mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=4540&objectType=file.Google Scholar
Wang, M., “Numerical investigations of fully nonlinear water waves generated by moving bottom topography”, Theor. Appl. Mech. Lett. 9 (2019) 328337; doi:10.1016/j.taml.2019.05.009.CrossRefGoogle Scholar
Wehausen, J. V. and Laitone, E. V., “Surface waves”, Encyclopaedia Phys. 9 (1960) 446778; available at: https://surfacewaves.berkeley.edu/.Google Scholar
Wu, T. Y.-T., “Generation of upstream advancing solitons by moving disturbances”, J. Fluid Mech. 184 (1987) 7599; doi:10.1017/S0022112087002817.CrossRefGoogle Scholar
Wurtele, M. G., Sharman, R. D. and Datta, A., “Atmsopheric lee waves”, Annu. Rev. Fluid Mech. 28 (1996) 429476; doi:10.1146/annurev.fl.28.010196.002241.CrossRefGoogle Scholar
Yiğit, E. and Medvedev, A. S., “Obscure waves in planetary atmospheres”, Phys. Today 72 (2019) 4046; doi:10.1063/PT.3.4226.CrossRefGoogle Scholar
Zabusky, N. J. and Kruskal, M. D., “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett. 15 (1965) 240243; doi:10.1103/PhysRevLett.15.240.CrossRefGoogle Scholar
Zhang, D. K., “Discovering new Runge–Kutta methods using unstructured numerical search”, Preprint, 2019, arXiv:1911.00318v1.Google Scholar
Zhang, Y.-L. and Zhu, S.-P., “Open channel flow past a bottom obstruction”, J. Engrg. Math. 30 (1996) 487499; doi:10.1007/BF00049248.CrossRefGoogle Scholar