Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T03:08:32.298Z Has data issue: false hasContentIssue false

Including ionisation in a simple model of single-bubble sonoluminescence

Published online by Cambridge University Press:  17 February 2009

Angus I. S. Munro
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania, Australia; e-mail: Larry.Forbes@utas.edu.au.
Larry K. Forbes
Affiliation:
School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania, Australia; e-mail: Larry.Forbes@utas.edu.au.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A small gas bubble in a liquid, when driven by intense ultrasound, collapses and emits light in a process called Single-Bubble Sonoluminescence (SBSL). While the dynamics of driven bubbles are well studied, less is known of the physical conditions in the gas or whether it is necessary to include ionisation in simpler studies of bubble dynamics. In this study, a model was derived from Rayleigh-Plesset dynamics, a van der Waals equation of state and the first law of thermodynamics (including interfacial heat transfer and ionisation). Stronger model ionisation reduced the maximum collapse temperature, and altered other collapse characteristics. Chaotic parameter regions are proximal to, but not coincident with, known stable SL regions. Resonant behaviour was only markedly affected by ionisation close to these chaotic regions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Adkins, C., Equilibrium Thermodynamics (Cambridge University Press, Cambridge, 1983).CrossRefGoogle Scholar
[2]Brenner, M., Hilgenfeldt, S. and Lohse, D., “Single-bubble sonoluminescence”, Rev. Modern Phys. 74 (2002) 425484.CrossRefGoogle Scholar
[3]Brenner, M., Lohse, D. and Dupont, T., “Bubble shape oscillations and the onset of sonoluminescence”, Phys. Rev. Lett. 75 (1995) 954957.CrossRefGoogle ScholarPubMed
[4]Cheng, H., Chu, M., Leung, P. and Yuan, L., “How important are shock waves to single-bubble sonoluminescence?”, Phys. Rev. E 58 (1998) R2705–2708.CrossRefGoogle Scholar
[5]Forbes, L., “A series analysis of forced transverse oscillations in a spring-mass system”, SIAM J. Appl. Math. 49 (1989) 704719.CrossRefGoogle Scholar
[6]Forbes, L., “An analytical and numerical study of the forced vibration of a spherical cavity”, J. Sound Vibration 172 (1994) 471489.CrossRefGoogle Scholar
[7]Gaitan, D., Crum, L., Church, C. and Roy, R., “Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble”, J. Acoust. Soc. Amer. 91 (1992) 31663183.CrossRefGoogle Scholar
[8]Guckenheimer, J. and Holmes, P., Nonlinear oscillations, dynamic systems, and bifurcarions of vector fields (Springer, New York, 1983).CrossRefGoogle Scholar
[9]Hammer, D. and Frommhold, L., “Topical review. Sonoluminescence: how bubbles glow”, J. Modern Opt. 48 (2001) 239277.CrossRefGoogle Scholar
[10]Hammer, D. and Frommhold, L., “Light emission of sonoluminescent bubbles containing a rare gas and water vapor”, Phys. Rev. E 65 (2002) 046309046322.CrossRefGoogle ScholarPubMed
[11]Harris, P. J., Al-Awadi, H. J. and Soh, W. K., “An investigation into the effects of heat transfer on the motion of a spherical bubble”, ANZIAM J. 45 (2004) 361371.CrossRefGoogle Scholar
[12]Hilgenfeldt, S., Brenner, M., Grossmann, S. and Lohse, D., “Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles”, J. Fluid Mech. 365 (1998) 17 1204.CrossRefGoogle Scholar
[13]Hilgenfeldt, S., Grossmann, S. and Lohse, D., “A simple explanation of light emission in sonoluminescence”, Nature (London) 398 (6726) (1999) 402405.CrossRefGoogle Scholar
[14]Hilgenfeldt, S., Grossmann, S. and Lohse, D., “Sonoluminescence light emission”, Phys. Fluids 11 (1999) 13181330.CrossRefGoogle Scholar
[15]Hilgenfeldt, S. and Lohse, D., “Predictions for upscaling sonoluminescence”, Phys. Rev. Lett. 82 (1999) 10361039.CrossRefGoogle Scholar
[16]Hilgenfeldt, S., Lohse, D. and Brenner, M., “Phase diagrams for sonoluminescing bubbles”, Phys. Fluids 8 (1996) 28082826.CrossRefGoogle Scholar
[17]Ho, C., Yuan, L., Chu, M., Leung, P. and Wei, W., “Effects of ionization in single-bubble sonoluminescence”, Phys. Rev. E 65 (2002) 041201–1–041201–12.CrossRefGoogle ScholarPubMed
[18]Keller, J. B. and Kolodner, I. I., “Damping of underwater bubble explosion oscillations”, J. Appl. Phys. 27 (1956) 11521161.CrossRefGoogle Scholar
[19]Ketterling, J. and Apfel, R., “Shape and extinction thresholds in sonoluminescence parameter space”, J. Acoust. Soc. Amer. 107 (2000) L13–L18.CrossRefGoogle ScholarPubMed
[20]Kondic, L., Gersten, J. and Yuan, C., “Theoretical studies of sonoluminescence radiation: radiative transfer and parametric dependence”, Phys. Rev. E 52 (1995) 49764990.CrossRefGoogle ScholarPubMed
[21]Kwak, H., Lee, J. and Karng, S., “Bubble dynamics for single-bubble sonoluminescence”, J. Phys. Soc. Japan 70 (2001) 29092917.CrossRefGoogle Scholar
[22]Lauterborn, W., “Numerical investigation of nonlinear oscillations of gas bubbles in liquids”, J. Acoust. Soc. Amer. 59 (1976) 283293.CrossRefGoogle Scholar
[23]Lauterborn, W. and Mettin, R., “Response curves of bubbles”, in Proceedings of the 16th ICA/135th ASA Meeting Seattle, WA, USA, (Acoustial Society of America (ASA), 1998), pp. 22812282.Google Scholar
[24]Lauterborn, W. and Parlitz, U., “Methods of chaos physics and their application to acoustics”, J. Acoust. Soc. Amer. 84 (1988) 19751993.CrossRefGoogle Scholar
[25]Levinsen, M. T., Weppenaar, N., Dam, J. S., Simon, G. and Skogstad, M., “Direct observation of period-doubled nonspherical states in single-bubble sonoluminescence”, Phys. Rev. E 68 (2003) 35303.CrossRefGoogle ScholarPubMed
[26]Lide, D. (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Ranton, 1995).Google Scholar
[27]Lin, H., Storey, B. and Szeri, A., “Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation”, J. Fluid Mech. 452 (2002) 145162.CrossRefGoogle Scholar
[28]Lofstedt, R., Weninger, S., Putterman, S. and Barber, B., “Sonoluminescing air bubbles rectify argon”, Phys. Rev. E 51 (1995) 44004410.Google Scholar
[29]Moss, W., Young, D., Harte, J., Levatin, J., Rozsnyai, B., Zimmerman, G. and Zimmerman, I., “Computed optical emissions from a sonoluminescing bubble”, Phys. Rev. E 59 (1999) 29862992.CrossRefGoogle Scholar
[30]Parlitz, U., “Common dynamical features of periodically driven strictly dissipative oscillators”. Internat J. Bifurcation Chaos 3 (1993) 703715.CrossRefGoogle Scholar
[31]Parlitz, U., Englisch, C., Scheffczyk, C. and Lauterborn, W., “Bifurcation structure of bubble oscillators”, J. Acoust. Soc. Amer. 88 (1990) 10611077.CrossRefGoogle Scholar
[32]Parlitz, U. and Lauterborn, W., “Resonances and torsion numbers of driven dissipative nonlinear oscillators”, Z. Naturforsch 41(a) (1985) 605614.CrossRefGoogle Scholar
[33]Plesset, M., “The dynamics of cavitation bubbles”, J. Appl. Mech. 16 (1949) 277282.CrossRefGoogle Scholar
[34]Rayleigh, L., “On the pressure developed in a liquid during the collapse of a spherical cavity”, Phil. Mag. 34 (1917) 9498.CrossRefGoogle Scholar
[35]Scheffczyk, C., Parlitz, U., Kurz, T., Knop, W. and Lauterborn, W., “Comparison of bifurcation structures of driven dissipative nonlinear oscillators”, Phys. Rev. A 43 (1991) 64956502.CrossRefGoogle ScholarPubMed
[36]Simon, G., Cvitanovic, P., Levinsen, M., Csabai, I. and Horvath, A., “Periodic orbit theory applied to a chaotically oscillating gas bubble in water”, Nonlinearity 15 (2002) 2543.CrossRefGoogle Scholar
[37]Storey, B. and Szeri, A., “Mixture segregation within sonoluminescing bubbles”, J. Fluid Mech. 396 (1999) 203221.CrossRefGoogle Scholar
[38]Umemura, S., Yumita, N. and Nishigaki, R., “Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70”, Japan. J. Cancer Res. 84 (1993) 582588.CrossRefGoogle ScholarPubMed
[39]Unger, E., Matsunaga, T., McCreery, T., Schumann, P., Sweitzer, R. and Quigley, R., “Therapeutic applications of microbubbles”, Eur. J. Radiology 42 (2002) 160168.CrossRefGoogle ScholarPubMed
[40]Vazquez, G. and Putterman, S., “Temperature and pressure dependence of sonoluminescence”, Phys. Rev. Lett. 85 (2000) 30373040.CrossRefGoogle ScholarPubMed
[41]Vuong, V. and Szeri, A., “Sonoluminescence and diffusive transport”, Phys. Fluids 8 (1996) 23542364.CrossRefGoogle Scholar
[42]Xavier, C. and Clemente, R.. “Dissociation and ionization in sonoluminescence”, J. Phys. Soc. Japan 70 (2001) 387393.CrossRefGoogle Scholar
[43]Yasui, K., “Alternative model of single-bubble sonoluminescence”, Phys. Rev. E 56 (1997) 67506760.CrossRefGoogle Scholar