Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:52:47.081Z Has data issue: false hasContentIssue false

NONLINEAR MODULATION OF RANDOM WAVE SPECTRA FOR SURFACE-GRAVITY WAVES WITH LINEAR SHEAR CURRENTS

Published online by Cambridge University Press:  10 January 2025

SUMAN MUKHERJEE
Affiliation:
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India; e-mail: sumanmukherjeemath@gmail.com, souravhalder76@gmail.com
SOURAV HALDER
Affiliation:
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India; e-mail: sumanmukherjeemath@gmail.com, souravhalder76@gmail.com
A. K. DHAR*
Affiliation:
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India; e-mail: sumanmukherjeemath@gmail.com, souravhalder76@gmail.com

Abstract

We first derive Alber’s equation for the Wigner distribution function using the fourth-order nonlinear Schrödinger equation, and on the basis of this equation we next analyse the stability of the narrowband approximation of the Joint North Sea Wave Project spectrum. Therefore, one interesting result of this study concerns the effect of modulational instability obtained from the fourth-order nonlinear Schrödinger equation. The analysis is restricted to one horizontal direction, parallel to the direction of wave motion, to take advantage of potential flow theory. We find that shear currents considerably modify the instability behaviours of weakly nonlinear waves. The key point of this study is that the present fourth-order analysis shows considerable deviations in the modulational instability properties from the third-order analysis and reduces the growth rate of instability. Moreover, we present here a connection between the random and deterministic properties of a random wavetrain for vanishing spectrum bandwidth.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, I. E., “The effects of randomness on the stability of two-dimensional surface wavetrains”, Proc. R. Soc. Lond. A 363 (1978) 545546; doi:10.1098/rspa.1978.0181.Google Scholar
Alber, I. E. and Saffman, P. G., “Stability of random nonlinear deep water waves with finite bandwidth spectra”, TRW Defense and Space Systems Cnoup Report no. 31326-6035-RU-00 (1978).Google Scholar
Benjamin, T. and Feir, J., “The disintegration of wave trains on deep water Part 1. Theory”, J. Fluid Mech. 27 (1967) 417430; doi:10.1017/S002211206700045X.CrossRefGoogle Scholar
Crawford, D. R., Saffman, P. G. and Yuen, H. C., “Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves”, Wave Motion 2 (1980) 116; doi:10.1016/0165-2125(80)90029-3.CrossRefGoogle Scholar
Dhar, A. K. and Das, K. P., “A fourth-order evolution equation for deep water surface gravity waves in the presence of wind blowing over water”, Phys. Fluids 2 (1990) 778783; doi:10.1063/1.857731.CrossRefGoogle Scholar
Dhar, A. K. and Kirby, J. T., “Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity”, Phys. Fluids 35 (2023) Article ID: 026601; doi:10.1063/5.0136002.CrossRefGoogle Scholar
Dysthe, K. B., “Note on a modification to the nonlinear Schrödinger equation for application to deep water waves”, Proc. R. Soc. Lond. A 369 (1979) 105114; doi:10.1098/rspa.1979.0154.Google Scholar
Halder, S. and Dhar, A. K., “Evolution of narrow-band spectrum of two random Stokes wavetrains in deep water”, Ocean Dyn. 73 (2023) 317331; doi:10.1007/s10236-023-01548-w.CrossRefGoogle Scholar
Halder, S. and Dhar, A. K., “The influence of wind on the evolution of two random wavetrains on deep water”, Phys. Fluids 35 (2023) Article ID: 052107; doi:10.1063/5.0146798.CrossRefGoogle Scholar
Hasselmann, K., “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory”, J. Fluid Mech. 12 (1962) Article ID: 481; doi:10.1017/S0022112062000373.CrossRefGoogle Scholar
Hasselmann, K., “On the non-linear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems, wave-particle analogy, irreversibility”, J. Fluid Mech. 15 (1963) 273281; doi:10.1017/S0022112063000239.CrossRefGoogle Scholar
Hasselmann et al., K., “Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)”, Deutsche Hydrogr. Z., Suppl. A 80 (1973), Article no. 12; https://hdl.handle.net/21.11116/0000-0007-DD3C-E.Google Scholar
Janssen, P. A. E. M., “Long-time behaviour of a random inhomogeneous field of weakly nonlinear surface gravity waves”, J. Fluid Mech. 133 (1983) 113132; doi:10.1017/S0022112083001810.CrossRefGoogle Scholar
Janssen, P. A. E. M., “On a fourth-order envelope equation for deep-water waves”, J. Fluid Mech. 126 (1983) 111; doi:10.1017/S0022112083000014.CrossRefGoogle Scholar
Janssen, P. A. E. M., “Stability of a random inhomogeneous field of weakly nonlinear surface gravity waves with application to the JONSWAP study”, in: The ocean surface: wave breaking, turbulent mixing and radio probing (eds. Toba, Y. and Mitsuyasu, H.) (Reidel, Dordrecht, The Netherlands, 1985) 3949.CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselman, S. and Janssen, P. A. E. M., Dynamics and modelling of ocean waves (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar
Landau, L. D., “On electron plasma oscillations”, Sov. Phys. JETP 16 (1946) 574.Google Scholar
Liao, B., Dong, G., Ma, Y. and Gao, J. L., “Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth”, Phys. Rev. E 96 (2017) Article ID: 043111; doi:10.1103/PhysRevE.96.043111.CrossRefGoogle ScholarPubMed
Lighthill, M. J., “Some special cases treated by the Whitham theory”, Proc. R. Soc. Lond. A 299(1456) (1967) 2853; doi:10.1098/rspa.1967.0121.Google Scholar
Longuet-Higgins, M. S., “The instabilities of gravity waves of finite amplitude in deep water I. Superharmonics”, Proc. R. Soc. Lond. A 360 (1978) 471488; doi:10.1098/rspa.1978.0080.Google Scholar
Longuet-Higgins, M. S., “The instabilities of gravity waves of finite amplitude in deep water II. Subharmonics”, Proc. R. Soc. Lond. A 360 (1978) 489505; doi:10.1098/rspa.1978.0081.Google Scholar
Moyal, J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc. 45 (1949) 99124; doi:10.1017/S0305004100000487.CrossRefGoogle Scholar
Onorato, M., Osborne, A., Fedele, R. and Serio, M., “Landau damping and coherent structures in narrow-banded 1+1 deep water gravity waves”, Phys. Rev. E 67 (2003) Article ID: 046305; doi:10.1103/PhysRevE.67.046305.CrossRefGoogle ScholarPubMed
Onorato, M., Osborne, A. and Serio, M., “Freak waves in random wave trains”, Proc. Int. Conf. Offshore Mech. Arctic Eng. - OMAE 5 (2001) 155159.Google Scholar
Onorato, M. Osborne, A., Serio, M., Cavaleri, L., Brandini, C. and Stansberg, C., “Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves”, Eur. J. Mech. B/Fluids 25 (2006) 586601; doi:10.1016/j.euromechflu.2006.01.002.CrossRefGoogle Scholar
Onorato, M., Osborne, A. R. and Bertone, S., “Freak waves in random oceanic sea states”, Phys. Rev. Lett. 86 (2001) 58315834; doi:10.1103/PhysRevLett.86.5831.CrossRefGoogle ScholarPubMed
Pal, T. and Dhar, A. K., “Nonlinear self-modulation of gravity-capillary waves on shear currents in finite depth”, ANZIAM J. 65 (2023) 248272; doi:10.1017/S1446181123000196.CrossRefGoogle Scholar
Phillips, O. M., “On the dynamics of unsteady gravity waves of finite amplitude. Part I. The elementary interactions”, J. Fluid Mech. 9 (1960) 193217; doi:10.1017/S0022112060001043.CrossRefGoogle Scholar
Watson, K. M. and West, B. J., “A transport equation description of nonlinear ocean surface wave interactions”, J. Fluid Mech. 70 (1975) 815826; doi:10.1017/S0022112075002364.CrossRefGoogle Scholar
Wigner, E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev. 40 (1932) 749759; doi:10.1103/PhysRev.40.749.CrossRefGoogle Scholar
Willebrand, J., “Transport in a nonlinear and inhomogeneous random gravity wave field”, J. Fluid Mech. 70 (1975) 113126; doi:10.1017/S0022112075001929.CrossRefGoogle Scholar
Zakharov, V. E., “Collapse of Langmuir waves”, Sov. Phys. JETP 35 (1972) 908914; http://jetp.ras.ru/cgi-bin/dn/e_035_05_0908.pdf.Google Scholar
Zakharov, V. E., “Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid”, Eur. J. Mech. B/Fluids 18 (1999) 327344; doi:10.1016/S0997-7546(99)80031-4.CrossRefGoogle Scholar
Zakharov, V. E., Musher, S. L. and Rubenchik, A. M., “Hamiltonian approach to the description of non-linear plasma phenomena”, Phys. Rep. 129 (1985) 285366; doi:10.1016/0370-1573(85)90040-7.CrossRefGoogle Scholar