Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T04:59:22.821Z Has data issue: false hasContentIssue false

NUMERICAL STABILITY AND ACCURACY OF THE SCALED BOUNDARY FINITE ELEMENT METHOD IN ENGINEERING APPLICATIONS

Published online by Cambridge University Press:  17 December 2015

MIAO LI
Affiliation:
Griffith School of Engineering, Griffith University, Queensland 4222, Australia email hong.zhang@griffith.edu.au Engineering, Faculty of Business, Charles Sturt University, Bathurst, NSW 2795, Australia
YONG ZHANG
Affiliation:
Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
HONG ZHANG*
Affiliation:
Griffith School of Engineering, Griffith University, Queensland 4222, Australia email hong.zhang@griffith.edu.au
HONG GUAN
Affiliation:
Griffith School of Engineering, Griffith University, Queensland 4222, Australia email hong.zhang@griffith.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The scaled boundary finite element method (SBFEM) is a semi-analytical computational method initially developed in the 1990s. It has been widely applied in the fields of solid mechanics, oceanic, geotechnical, hydraulic, electromagnetic and acoustic engineering problems. Most of the published work on SBFEM has focused on its theoretical development and practical applications, but, so far, no explicit discussion on the numerical stability and accuracy of its solution has been systematically documented. However, for a reliable engineering application, the inherent numerical problems associated with SBFEM solution procedures require thorough analysis in terms of its causes and the corresponding remedies. This study investigates the numerical performance of SBFEM with respect to matrix manipulation techniques and their properties. Some illustrative examples are given to identify reasons for possible numerical difficulties, and corresponding solution schemes are proposed to overcome these problems.

Type
Research Article
Copyright
© 2015 Australian Mathematical Society 

References

Bazyar, M. H. and Song, C. M., “A continued-fraction-based high-order transmitting boundary for wave propagation in unbounded domains of arbitrary geometry”, Int. J. Numer. Meth. Eng. 74 (2008) 209237; doi:10.1002/nme.2147.CrossRefGoogle Scholar
Birk, C., Prempramote, S. and Song, C., “An improved continued-fraction-based high-order transmitting boundary for time-domain analyses in unbounded domains”, Int. J. Numer. Meth. Eng. 89 (2012) 269298; doi:10.1002/nme.3238.CrossRefGoogle Scholar
Chen, D. H., “Logarithmic singular stress field in a semi-infinite plate consisting of two edge-bonded wedges subjected to surface tractions”, Int. J. Fract. 75 (1996) 357378; doi:10.1007/bf00019615.CrossRefGoogle Scholar
Clough, R. W. and Penzien, J., Dynamics of structures (McGraw-Hill, New York, 1975).Google Scholar
Deeks, A. J. and Wolf, J. P., “Semi-analytical elastostatic analysis of unbounded two-dimensional domains”, Int. J. Numer. Anal. Methods Geomech. 26 (2002) 10311057; doi:10.1002/Nag.232.CrossRefGoogle Scholar
Deeks, A. J. and Wolf, J. P., “A virtual work derivation of the scaled boundary finite-element method for elastostatics”, Comput. Mech. 28 (2002) 489504; doi:10.1007/s00466-002-0314-2.CrossRefGoogle Scholar
Deeks, A. J. and Wolf, J. P., “Semi-analytical solution of Laplace’s equation in non-equilibrating unbounded problems”, Comput. Struct. 81 (2003) 15251537; doi:10.1016/S0045-7949(03)00144-5.CrossRefGoogle Scholar
Gadi, K. S., Joseph, P. F., Zhang, N. S. and Kaya, A. C., “Thermally induced logarithmic stress singularities in a composite wedge and other anomalies”, Eng. Fract. Mech. 65 (2000) 645664; doi:10.1016/S0013-7944(99)00145-9.CrossRefGoogle Scholar
Goldberg, D., “What every computer scientist should know about floating-point arithmetic”, ACM Comput. Surverys 23 (1991) 548; doi:10.1145/103162.103163.CrossRefGoogle Scholar
Li, B. N., Extending the scaled boundary finite element method to wave diffraction problems, Ph.D. Thesis, The University of Western Australia, 2007.Google Scholar
Li, B. N., Cheng, L., Deeks, A. J. and Zhao, M., “A semi-analytical solution method for two-dimensional Helmholtz equation”, Appl. Ocean Res. 28 (2006) 193207; doi:10.1016/j.apor.2006.06.003.CrossRefGoogle Scholar
Li, M., Song, H., Guan, H. and Zhang, H., “Schur decomposition in the scaled boundary finite element method in elastostatics”, Proc. of the 9th World Congress on Comp. Mech. (WCCM) and 4th Asia-Pacific Congress on Comp. Mech. 2010 (APCOM), Minisymposia – The Scaled Boundary Finite Element Method (Sydney, Australia, 2010).Google Scholar
Liu, J., Lin, G., FM, W. and Li, J., “The scaled boundary finite element method applied to Electromagnetic field problems”, 9th World Congress on Comp. Mech. and 4th Asian Pacific Congress on Comp. Mech. (Sydney, Australia, 2010).Google Scholar
Paige, C. and Vanloan, C., “A Schur Decomposition for Hamiltonian Matrices”, Linear Algebra Appl. 41 (1981) 1132; doi:10.1016/0024-3795(81)90086-0.CrossRefGoogle Scholar
Sinclair, G. B., “Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates in extension”, J. Appl. Mech. 66 (1999) 556560; doi:110.1115/1.2791085.CrossRefGoogle Scholar
Sinclair, G. B., “Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates under bending”, J. Appl. Mech. 67 (2000) 219223; doi:10.1115/1.321174.CrossRefGoogle Scholar
Song, C. M., “A matrix function solution for the scaled boundary finite-element equation in statics”, Comput. Methods Appl. Math. 193 (2004) 23252356; doi:10.1016/j.cma.2004.01.017.Google Scholar
Song, C. M., “The scaled boundary finite element method in structural dynamics”, Int. J. Numer. Meth. Eng. 77 (2009) 11391171; doi:10.1002/Nme.2454.CrossRefGoogle Scholar
Song, C. M. and Wolf, J. P., “Consistent infinitesimal finite-element cell method for diffusion equation in unbounded domain”, Comput. Methods Appl. Math. 132 (1996) 319334; doi:10.1016/0045-7825(96)01029-8.Google Scholar
Song, C. M. and Wolf, J. P., “The scaled boundary finite-element method – alias consistent infinitesimal finite-element cell method – for elastodynamics”, Comput. Methods Appl. Math. 147 (1997) 329355; doi:10.1016/S0045-7825(97)00021-2.Google Scholar
Song, C. M. and Wolf, J. P., “The scaled boundary finite-element method: analytical solution in frequency domain”, Comput. Methods Appl. Math. 164 (1998) 249264; doi:10.1016/S0045-7825(98)00058-9.Google Scholar
Song, C. M. and Wolf, J. P., “The scaled boundary finite-element method – a primer: solution procedures”, Comput. Struct. 78 (2000) 211225; doi:10.1016/S0045-7825(98)00058-9.CrossRefGoogle Scholar
Song, H., Tao, L. B. and Chakrabarti, S., “Modelling of water wave interaction with multiple cylinders of arbitrary shape”, J. Comput. Phys. 229 (2010) 14981513; doi:10.1016/j.jcp.2009.10.041.CrossRefGoogle Scholar
Tao, L. B., Song, H. and Chakrabarti, S., “Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder”, Comput. Methods Appl. Math. 197 (2007) 232242; doi:10.1016/j.cma.2007.07.025.Google Scholar
Wolf, J. P. and Song, C. M., Finite-element modelling of unbounded media (Wiley, Chichester, 1996).Google Scholar
Wolf, J. P. and Song, C. M., “The scaled boundary finite-element method – a primer: derivations”, Comput. Struct. 78 (2000) 191210; doi:10.1016/S0045-7949(00)00099-7.CrossRefGoogle Scholar
Wolf, J. P. and Song, C. M., “The scaled boundary finite-element method – a fundamental solution-less boundary-element method”, Comput. Methods Appl. Math. 190 (2001) 55515568; doi:10.1016/S0045-7825(01)00183-9.Google Scholar
Yang, Z. J., “Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method”, Eng. Fract. Mech. 73 (2006) 17111731; doi:10.1016/j.engfracmech.2006.02.004.CrossRefGoogle Scholar
Yang, Z. J. and Deeks, A. J., “Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method”, Eng. Fract. Mech. 74 (2007) 25472573; doi:10.1016/j.engfracmech.2006.12.001.CrossRefGoogle Scholar
Yang, Z. J. and Deeks, A. J., “Modelling cohesive crack growth using a two-step finite element-scaled boundary finite element coupled method”, Int. J. Fract. 143 (2007) 333354; doi:10.1007/s10704-007-9065-6.CrossRefGoogle Scholar