Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T17:00:57.567Z Has data issue: false hasContentIssue false

On Parrondo's paradox: how to construct unfair games by composing fair games

Published online by Cambridge University Press:  17 February 2009

E. S. Key
Affiliation:
Department of Mathematical Sciences, University of Wisconsin Milwaukee, Milwaukee WI 53201, USA; e-mail: ericskey@uwm.edu.
M. M. Kłosek
Affiliation:
Department of Mathematical Sciences, University of Wisconsin Milwaukee, Milwaukee WI 53201, USA. Currently at the Center of Scientific Review, National Institutes of Health This article was written in a personal capacity and does not necessarily represent the opinions or reflect the views of the National Institutes of Health, the Department of Health and Human Services, or the Federal Government.
D. Abbott
Affiliation:
Centre for Biomedical Engineering (CBME), Department of Electrical & Electronic Engineering, University of Adelaide, Adelaide SA 5005Australia; e-mail: dabbott@eleceng.adelaide.edu.au.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct games of chance from simpler games of chance. We show that it may happen that the simpler games of chance are fair or unfavourable to a player and yet the new combined game is favourable—this is a counter-intuitive phenomenon known as Parrondo's paradox. We observe that all of the games in question are random walks in periodic environments (RWPE) when viewed on the proper time scale. Consequently, we use RWPE techniques to derive conditions under which Parrondo's paradox occurs.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Allison, A. and Abbott, D., “Stochastically switched control systems”, in Proc. 2nd Int. Conf. on Unsolved Problems of Noise (UPoN'99), Adelaide, Australia, 11–15th July 1999 (eds. Abbott, D. and Kish, L. B.), (American Institute of Physics Conference Proceedings 511, 2000) 249254.Google Scholar
[2]Doering, C. R., “Randomly rattled ratchets”, Nuovo Cimento 17D (1995) 685–679.CrossRefGoogle Scholar
[3]Eisert, J., Wilkens, M. and Lewenstein, M., “Quantum games and quantum strategies”, Phys. Rev. Len. 83 (1999) 30773080.CrossRefGoogle Scholar
[4]Gargamo, L. and Vaccaro, U., “Efficient generation of fair dice with few biased coins”, IEEE Trans. info. Theory. 45 (1999) 16001606.CrossRefGoogle Scholar
[5]Goldenberg, L., Vaidman, L. and Wiesner, S., “Quantum gambling”, Phys. Rev. Lett. 82 (1999) 33563359.CrossRefGoogle Scholar
[6]Harmer, G. P. and Abbott, D., “Losing strategies can win by Parrondo's paradox”, Nature 402 (1999) 846.CrossRefGoogle Scholar
[7]Harmer, G. P. and Abbott, D., “Parrondo's paradox”, Statistical Science 14 (1999) 206213.Google Scholar
[8]Harmer, G. P., Abbott, D. and Taylor, P., “The paradox of Parrondo's games”, Proc. R. Soc. Lond. A. 456 (2000) 247259.CrossRefGoogle Scholar
[9]Harmer, G. P., Abbott, D., Taylor, P. and Parrondo, J. M. R., “Parrondo's paradoxical games and the discrete Brownian ratchet”, in Proc. 2nd Int. Conf. on Unsolved Problems of Noise (UPoN'99), Adelaide, Australia, 11–15th July 1999 (eds. Abbott, D. and Kish, L. B.), (American Institute of Physics Conference Proceedings 511, 2000) 189200.Google Scholar
[10]Harmer, G. P., Abbott, D., Taylor, P., Pearce, C. E. M. and Parrondo, J. M. R., “Information entropy and Parrondo's discrete-time ratchet”, in Proc. Stochaos, Ambleside, UK, 16–20 August 1999 (eds. Broornhead, D. S., Luchinskaya, E. A., McClintock, P. V. E. and Mullin, T.), (American Institute of Physics Conference Proceedings 502, 2000) 544549.Google Scholar
[11]Key, E. S., “Recurrence and transience criteria for random walk in a random environment”, Ann. Prob. 12 (1984) 529560.CrossRefGoogle Scholar
[12]Key, E. S., “Computable examples of the maximal Lyapunov exponent”, Probab. Th. Rel. Fields 75 (1987) 97107.CrossRefGoogle Scholar
[13]Key, E. S. and Volkmer, H., “Eigenvalue multiplicities of products of companion matrices”, Electronic J. Lin. Algebra 11 (2004) 396409.Google Scholar
[14]Klosek, M. M. and Cox, R. W., “Steady-state currents in sharp stochastic ratchets”, in Proc. Srochaos, Ambleside, UK, 16–20 August 1999 (eds. Broomhead, D. S., Luchinskaya, E. A., McClintock, P. V. E. and Mullin, T.), (American Institute of Physics Conference Proceedings 502, 2000) 325330.Google Scholar
[15]Lee, Y., Abbott, D. and Stanley, H. E., “Minimal Parrondian ratchet: an exactly solvable model”, Phys. Rev. Lett. 91 (2003) 220601.CrossRefGoogle Scholar
[16]Linke, H., Humphrey, T. E., Löfgren, A., Sushkov, A. O., Newbury, R., Taylor, R. P. and Omling, P., “Experimental tunneling ratchets”, Science 286 (1999) 23142317.CrossRefGoogle ScholarPubMed
[17]Maslov, S. and Zhang, Y., “Optimal investment strategy for risky assets”, Int. J. Theor Appl. Fin. 1 (1998) 377387.CrossRefGoogle Scholar
[18]McClintock, P. V. E., “Unsolved problems of noise”, Nature 401 (1999) 2325.CrossRefGoogle ScholarPubMed
[19]Smith, J. Maynard, “personal communication”, 1999.Google Scholar
[20]Meyer, D. A., “Quantum strategies”, Phys. Rev. Lett. 82 (1998) 10521055.CrossRefGoogle Scholar
[21]Parrondo, J. M. R., Harmer, G. P. and Abbott, D., “New paradoxical games based on Brownian ratchets”, Phys. Rev. Lett. 85 (2000) 52265229.CrossRefGoogle ScholarPubMed
[22]Pearce, C. E. M., “On Parrondo's paradoxical games”, in Proc. 2nd Int. Conf. on Unsolved Problems of Noise (UPoN'99), Adelaide, Australia, 11–15th July 1999 (eds. Abbott, D. and Kish, L. B.), (American Institute of Physics Conference Proceedings 511, 2000) 201206.Google Scholar
[23]Pearce, C. E. M., “Entropy, Markov information sources and Parrondo games”, in Proc. 2nd Int. Conf. on Unsolved Problems of Noise (UPoN'99), Adelaide, Australia, 11–15th July 1999 (eds. Abbott, D. and Kish, L. B.), (American Institute of Physics Conference Proceedings 511, 2000) 207212.Google Scholar
[24]Pinsky, R. and Scheutzow, M., “Some remarks and examples concerning transience and recurrence of random diffusions”, Ann. Inst. H. Poincaré Probab. Statist. 28 (1992) 519536.Google Scholar
[25]Plaskota, L., “How to benefit from noise”, J. Complexity 12 (1996) 175184.CrossRefGoogle Scholar
[26]Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H., “Why the Brazil nuts are on top: size segregation of particulate matter shaking”, Phys. Rev. Lett. 58 (1987) 10381040.CrossRefGoogle Scholar
[27]Sarmiento, A., Reigada, R., Romero, A. H. and Lindenberg, K., “Enhanced pulse propagation in non-linear arrays of oscillators”, Phys. Rev. E 60 (1999) 53175326.CrossRefGoogle Scholar
[28]Seigman, A. E., “personal communication”, 1999.Google Scholar
[29]von Neumann, J., “Various techniques used in connection with random digits, notes by G. E. Forsythe, National Bureau of Standards”, Appl. Math. Ser. 12 (1951) 3638.Google Scholar
[30]Westerhoff, H. V., Tsong, T. Y., Chock, P. B., Chen, Y. and Astumian, R. D., “How enzymes can capture and transmit fee energy from an oscillating electric field”, Proc. Natl. Acad. Sci. 83 (1986) 47344738.CrossRefGoogle Scholar