Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T00:11:03.116Z Has data issue: false hasContentIssue false

PERTURBATION RESULTS RELATED TO PALINDROMIC EIGENVALUE PROBLEMS

Published online by Cambridge University Press:  01 July 2008

E. K.-W. CHU*
Affiliation:
School of Mathematical Sciences, Building 28, Monash University, VIC 3800, Australia (email: eric.chu@sci.monash.edu.au)
W.-W. Lin
Affiliation:
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan (email: wwlin@am.cthu.edu.tw)
C.-S. Wang
Affiliation:
Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan (email: cswang@math.ncku.edu.tw)
*
For correspondence; e-mail: eric.chu@sci.monash.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic with A0,A1∈𝒞n×n and (where or H). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Andrew, A. L., Chu, K.-W. E. and Lancaster, E., “Derivatives of eigenvalues and eigenvectors of nonlinear eigenvalue problems”, SIAM J. Matrix Anal. Appl. 14 (1993) 903926.CrossRefGoogle Scholar
[2]Bora, S., “Structured eigenvalue condition number and backward error of a class of polynomial eigenvalue problems”, Technical Report 417, DFG Research Centre Matheon, Berlin, 2007.Google Scholar
[3]Chu, K.-W. E., “The solution of the matrix equations AXBCXD=E and (Y ADZ,Y CBZ)=(E,F)”, Linear Algebra. Appl. 93 (1987) 93105.CrossRefGoogle Scholar
[4]Chu, K.-W. E., “On multiple eigenvalues of matrices depending on several parameters”, SIAM J. Numer. Anal. 27 (1990) 13681385.CrossRefGoogle Scholar
[5]Chu, E. K.-W., “Perturbation of eigenvalues for matrix polynomials via the Bauer–Fike theorems”, SIAM J. Matrix Anal. Appl. 25 (2003) 551573.CrossRefGoogle Scholar
[6]Chu, E. K.-W., Hwang, T.-M., Lin, W.-W. and Wu, C.-T., “Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms”, J. Comput. Appl. Math. 219 (2008) 237252.CrossRefGoogle Scholar
[7]Chu, E. K.-W., Lin, W.-W. and Wang, C.-S., “Asymptotic perturbation of palindromic eigenvalue problems”, Taiwanese J. Math. to appear. Preprint, National Centre of Theoretical Sciences, National Tsing Hua University, Taiwan, August 2007.Google Scholar
[8]Dedieu, J.-P. and Tisseur, F., “Perturbation theory for polynomial eigenvalue problems in homogeneous form”, Linear Algebra Appl. 358 (2003) 7194.CrossRefGoogle Scholar
[9]Elsner, L. and Sun, J. G., “Perturbation theorems for the generalized eigenvalue problem”, Linear Algebra Appl. 48 (1982) 341357.CrossRefGoogle Scholar
[10]Gohberg, I., Lancaster, P. and Rodman, L., Matrix polynomials (Academic Press, New York, 1982).Google Scholar
[11]Golub, G. H. and van Loan, C. F., Matrix computations, 3rd edn (Johns Hopkins University Press, Baltimore, 1996).Google Scholar
[12]Hilliges, A., “Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendungen in der Schienendynamik”, Master Thesis, Technical University Berlin, Germany, July 2004.Google Scholar
[13]Hilliges, A., Mehl, C. and Mehrmann, V., On the solution of palindromic eigenvalue problems, Proc. 4th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS (The European Community on Computational Methods in Applied Sciences, Jyväskylä, Finland, 2004).Google Scholar
[14]Ipsen, C. F., “Accurate eigenvalues for fast trains”, SIAM News 37 (2004).Google Scholar
[15]Kressner, D., Pelez, M. J. and Moro, J., Structured Hölder condition numbers for multiple eigenvalues, UMINF report, Department of Computer Sciences, Ume University, Sweden, 2006. (Revised January 2008; available at http://www.sam.math.ethz.ch/∼kressner/pubs.php.).Google Scholar
[16]Mackey, D. S., Mackey, N., Mehl, C. and Mehrmann, V., “Linearization spaces for matrix polynomials”, SIAM J. Matrix Appl. 28 (2006) 9711004.CrossRefGoogle Scholar
[17]Mackey, D. S., Mackey, N., Mehl, C. and Mehrmann, V., “Structured polynomial eigenvalue problems: good vibrations from good linearizations”, SIAM J. Matrix Appl. 28 (2006) 10291051.CrossRefGoogle Scholar
[18]Mackey, D. S., Mackey, N., Mehl, C. and Mehrmann, V., “Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form”, Numer. Lin. Alg. Appl. to appear. Technical Report 409, DFG Research Centre Matheon, Berlin, 2007.Google Scholar
[19]Stewart, G. W. and Sun, J. G., Matrix perturbation theory (Academic Press, New York, 1990).Google Scholar
[20]Tisseur, F., “Backward error and condition of polynomial eigenvalue problems”, Linear Algebra Appl. 309 (2000) 339361.CrossRefGoogle Scholar
[21]Tisseur, F. and Meerbergen, K., “A survey of the quadratic eigenvalue problem”, SIAM Rev. 43 (2001) 234286.CrossRefGoogle Scholar