Published online by Cambridge University Press: 17 February 2009
The Zakharov-Shabat scattering transform is an exact solution technique for the nonlinear Schrödinger equation, which describes the time evolution of weakly nonlinear wave trains. Envelope soliton and uniform wave train solutions of the nonlinear Schrödinger equation are separable in scattering transform space. The scattering transform is a potential analysis and synthesis technique for natural wave trains. Discrete versions of the direct and inverse scattering transform are presented, together with proven algorithms for their numerical computation from typical ocean wave records. The consequences of discrete resolution are considered.