Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T17:21:40.408Z Has data issue: false hasContentIssue false

SYMMETRY RESULT FOR SOME OVERDETERMINED VALUE PROBLEMS

Published online by Cambridge University Press:  01 April 2008

MOHAMMED BARKATOU*
Affiliation:
Department of Mathematics and Informatics, University of Chouaïb Doukkali, El Jadida, Morocco (email: mbarkatou@hotmail.com)
SAMIRA KHATMI
Affiliation:
University Laval, Québec, Canada
*
For correspondence; e-mail: mbarkatou@hotmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this article is to prove a symmetry result for several overdetermined boundary value problems. For the two first problems, our method combines the maximum principle with the monotonicity of the mean curvature. For the others, we use essentially the compatibility condition of the Neumann problem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2008

References

[1]Alexandrov, A. D., “Uniqueness theorems for surfaces in the large I, II”, Amer. Soc. Trans. 31 (1962) 341388.Google Scholar
[2]Amdeberhan, T., “Two symmetry problems in potential theory”, Electron J. Differential Equations 43 (2001) 15.Google Scholar
[3]Barkatou, M., “Some geometric properties for a class of non-Lipschitz domains”, New York J. Math. 8 (2002) 189213.Google Scholar
[4]Barkatou, M., Seck, D. and Ly, I., “An existence result for a quadrature surface free boundary problem”, Cent. Eur. J. Math. 3 (2005) 3957.CrossRefGoogle Scholar
[5]Bucur, D. and Trebeschi, P., “Shape optimization problems governed by nonlinear state equations”, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 945963.CrossRefGoogle Scholar
[6]Bucur, D. and Zolesio, J. P., “N-dimensional shape optimization under capacitary constraints”, J. Differential Equations 123 (1995) 504522.CrossRefGoogle Scholar
[7]Burago, Y. D. and Zalgaller, V. A., Geometric inequalities (Springer, Berlin, 1988).CrossRefGoogle Scholar
[8]Chenais, D., “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl. 52 (1975) 189289.CrossRefGoogle Scholar
[9]Fragalà, I., Gazzola, F. and Kawohl, B., “Overdetermined problems with possibly degenerate ellipticity, a geometric approach”, Math. Z. 254 (2006) 117132.CrossRefGoogle Scholar
[10]Fromm, S. J. and McDonald, P., “A symmetry problem from probability”, Proc. Amer. Math. Soc. 125 (1997) 32933297.CrossRefGoogle Scholar
[11]Gidas, G., Ni, W.-M. and Nirenberg, L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys. 68 (1979) 209300.CrossRefGoogle Scholar
[12]Huang, C. and Miller, D., “Domain functionals and exit times for Brownian motion”, Proc. Amer. Math. Soc. 130 (2001) 825831.CrossRefGoogle Scholar
[13]Kinateder, K. K. J. and McDonald, P., “Hypersurfaces in R d and the variance of times for Brownian motion”, Proc. Amer. Math. Soc. 125 (1997) 24532462.CrossRefGoogle Scholar
[14]Mikhailov, V., Équation aux dérivées partielles (Mir, Moscow, 1980).Google Scholar
[15]Payne, L. E., “Some remarks on overdetermined systems in linear elasticity”, J. Elasticity 18 (1987) 181189.CrossRefGoogle Scholar
[16]Payne, L. E. and Schaefer, P. W., “Duality theorems in some overdetermined boundary value problems”, Math. Methods Appl. Sci. 11 (1989) 805819.CrossRefGoogle Scholar
[17]Pironneau, O., Optimal shape design for elliptic systems, of Springer Series in Computational Physics (Springer, New York, 1984).CrossRefGoogle Scholar
[18]Rellich, F., “Darstellung der Eigenwerte durch einem Randintegral”, Math. Z. 46 (1940) 635646.CrossRefGoogle Scholar
[19]Serrin, J., “A symmetry problem in potential theory”, Arch. Ration. Mech. Anal. 43 (1971) 304318.CrossRefGoogle Scholar
[20]Sokołowski, J. and Zolèsio, J. P., Introduction to shape optimization, Volume 16 of Springer Series in Computational Mathematics (Springer, Berlin, 1992).CrossRefGoogle Scholar
[21]Weinberger, H. F., “Remark on the preceding paper of Serrin”, Arch. Ration. Mech. Anal. 43 (1971) 319320.CrossRefGoogle Scholar