Article contents
THREE-DIMENSIONAL WAVE-FREE POTENTIALS IN THE THEORY OF WATER WAVES
Published online by Cambridge University Press: 18 March 2014
Abstract
Problems of wave interaction with a body with arbitrary shape floating or submerged in water are of immense importance in the literature on the linearized theory of water waves. Wave-free potentials are used to construct solutions to these problems involving bodies with circular geometry, such as a submerged or half-immersed long horizontal circular cylinder (in two dimensions) or sphere (in three dimensions). These are singular solutions of Laplace’s equation satisfying the free surface condition and decaying rapidly away from the point of singularity. Wave-free potentials in two and three dimensions for infinitely deep water as well as water of uniform finite depth with a free surface are known in the literature. The method of constructing wave-free potentials in three dimensions is presented here in a systematic manner, neglecting or taking into account the effect of surface tension at the free surface or for water with an ice cover modelled as a thin elastic plate floating on the water. The forms of the wave motion at the upper surface (free surface or ice-covered surface) related to these wave-free potentials are depicted graphically in a number of figures for all the cases considered.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © 2014 Australian Mathematical Society
References
- 3
- Cited by