Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:49:42.978Z Has data issue: false hasContentIssue false

THREE-DIMENSIONAL WAVE-FREE POTENTIALS IN THE THEORY OF WATER WAVES

Published online by Cambridge University Press:  18 March 2014

HARPREET DHILLON
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata 700032, India email harpreetdhillon1186@gmail.com
B. N. MANDAL*
Affiliation:
Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Problems of wave interaction with a body with arbitrary shape floating or submerged in water are of immense importance in the literature on the linearized theory of water waves. Wave-free potentials are used to construct solutions to these problems involving bodies with circular geometry, such as a submerged or half-immersed long horizontal circular cylinder (in two dimensions) or sphere (in three dimensions). These are singular solutions of Laplace’s equation satisfying the free surface condition and decaying rapidly away from the point of singularity. Wave-free potentials in two and three dimensions for infinitely deep water as well as water of uniform finite depth with a free surface are known in the literature. The method of constructing wave-free potentials in three dimensions is presented here in a systematic manner, neglecting or taking into account the effect of surface tension at the free surface or for water with an ice cover modelled as a thin elastic plate floating on the water. The forms of the wave motion at the upper surface (free surface or ice-covered surface) related to these wave-free potentials are depicted graphically in a number of figures for all the cases considered.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Society 

References

Barakat, R., “Vertical motion of a floating sphere in a sine-wave sea”, J. Fluid Mech. 13 (1962) 540556 doi:10.1017/S0022112062000920.CrossRefGoogle Scholar
Bolton, W. E. and Ursell, F., “The wave force on an infinite long circular cylinder in an oblique sea”, J. Fluid Mech. 57 (1973) 241256 doi:10.1017/S0022112073001138.CrossRefGoogle Scholar
Chakrabarti, A., “On the solution of the problem of scattering of surface water waves of the edge of an ice cover”, Proc. R. Soc. Lond. A 456 (1997) 10871099 doi:10.1098/rspa.2000.0552.CrossRefGoogle Scholar
Chatjigeorgiou, I. K., “Hydrodynamic exciting forces on a submerged oblate spheroid in regular waves”, Comput. & Fluids 57 (2012) 151162 doi:10.1016/j.compfluid.2011.12.013.CrossRefGoogle Scholar
Chatjigeorgiou, I. K., “The analytic solution for hydrodynamic diffraction by submerged prolate spheroids in infinite water depth”, J. Engrg. Math. 81 (2013) 4765 doi:10.1007/s10665-012-9581-x.CrossRefGoogle Scholar
Das, D. and Mandal, B. N., “Oblique scattering by a circular cylinder submerged beneath an ice-cover”, Internat. J. Engrg. Sci. 44 (2006) 166179 doi:10.1016/j.ijengsci.2006.01.001.CrossRefGoogle Scholar
Das, D. and Mandal, B. N., “Water wave radiation by a sphere submerged in water with an ice-cover”, Arch Appl. Mech. 78 (2008) 649661 doi:10.1007/s00419-007-0186-1.CrossRefGoogle Scholar
Das, D. and Mandal, B. N., “Wave scattering by a circular cylinder half-immersed in water with an ice-cover”, Internat. J. Engrg. Sci. 47 (2009) 463474 doi:10.1016/j.ijengsci.2008.10.001.CrossRefGoogle Scholar
Das, D. and Mandal, B. N., “Construction of wave-free potential in the linearized theory of water waves”, J. Marine Sci. Appl. 9 (2010) 347354 doi:10.1007/s11804-010-1019-0.CrossRefGoogle Scholar
Das, D. and Mandal, B. N., “Wave radiation by a sphere submerged in a two-layer ocean with an ice-cover”, Appl. Ocean Res. 32 (2010) 358366 doi:10.1016/j.apor.2009.11.002.CrossRefGoogle Scholar
Das, D., Mandal, B. N. and Chakrabarti, A., “Energy identities in water wave theory for free-surface boundary condition with higher-order derivatives”, Fluid Dyn. Res. 40 (2008) 253272 doi:10.1016/j.fluiddyn.2007.10.002.CrossRefGoogle Scholar
Das, D. and Thakur, N., “Water wave scattering by a sphere submerged in uniform finite depth water with an ice-cover”, Marine Struct. 30 (2013) 6373 doi:10.1016/j.marstruc.2012.11.001.CrossRefGoogle Scholar
Davys, J. W., Hosking, R. J. and Sneyd, A. D., “Waves due to steadily moving source on a floating ice plate”, J. Fluid Mech. 158 (1985) 269287 doi:10.1017/S0022112085002646.CrossRefGoogle Scholar
Eatock Taylor, R. and Hu, C. S., “Multipole expansions for wave diffraction and radiation in deep water”, Ocean Engrg. 18 (1991) 191224 doi:10.1016/0029-8018(91)90002-8.CrossRefGoogle Scholar
Evans, D. V. and Porter, R., “Wave scattering by narrow cracks in ice-sheets floating on water of finite depth”, J. Fluid Mech. 484 (2003) 143165 doi:10.1017/S002211200300435X.CrossRefGoogle Scholar
Forbes, L. K., “Surface waves of large amplitude beneath an elastic sheet. Part I. Higher-order series solution”, J. Fluid Mech. 169 (1986) 409428 doi:10.1017/S0022112086000708.CrossRefGoogle Scholar
Forbes, L. K., “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solution”, J. Fluid Mech. 188 (1988) 491508 doi:10.1017/S0022112088000813.CrossRefGoogle Scholar
Fox, C. and Squire, V. A., “On the oblique reflexion and transmission of ocean waves at shore fast sea ice”, Philos. Trans. R. Soc. Lond. A 347 (1994) 185218 doi:10.1098/rsta.1994.0044.Google Scholar
Gayen Chowdhury, R. and Mandal, B. N., “Motion due to fundamental singularities in finite depth water with an elastic solid cover”, Fluid Dyn. Res. 38 (2006) 224240 doi:10.1016/j.fluiddyn.2005.12.001.CrossRefGoogle Scholar
Gayen Chowdhury, R., Mandal, B. N. and Chakrabarti, A., “Water-wave scattering by an ice-strip”, J. Engrg. Math. 53 (2005) 2137 doi:10.1007/s10665-005-2725-5.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series and products (Academic Press, New York, 1980).Google Scholar
Gray, E. P., “Scattering of a surface wave by a submerged sphere”, J. Engrg. Math. 12 (1978) 1541 doi:10.1007/BF00042802.CrossRefGoogle Scholar
Havelock, H. T., “Waves due to a floating sphere making periodic heaving oscillations”, Proc. R. Soc. Lond. A 231 (1955) 17 doi:10.1098/rspa.1955.0152.Google Scholar
Hulme, A., “The wave forces on a floating hemisphere undergoing forced periodic oscillations”, J. Fluid Mech. 121 (1982) 443463 doi:10.1017/S0022112082001980.CrossRefGoogle Scholar
Manam, S. R., Bhattacharjee, J. and Sahoo, T., “Expansion formulae in wave structure interaction problems”, Proc. R. Soc. Lond. A 462 (2006) 263287 doi:10.1098/rspa.2005.1562.Google Scholar
Mandal, B. N. and Das, D., “Construction of wave-free potentials in linearized theory of water waves in uniform finite depth water”, Rev. Bull. Calcutta Math. Soc. 18 (2010) 173184.Google Scholar
Mandal, B. N. and Goswami, S. K., “Scattering of surface waves obliquely incident on a fixed half immersed circular cylinder”, Math. Proc. Cambridge Philos. Soc. 96 (1984) 359369 doi:10.1017/S0305004100062265.CrossRefGoogle Scholar
Linton, C. M., “Radiation and diffraction of water waves by a submerged sphere in finite depth”, Ocean Engrg. 18 (1991) 6174 doi:10.1016/0029-8018(91)90034-N.CrossRefGoogle Scholar
Linton, C. M. and Chung, H., “Reflection and transmission at the ocean/sea-ice boundary”, Wave Motion 38 (2003) 4352 doi:10.1016/S0165-2125(03)00003-9.CrossRefGoogle Scholar
Linton, C. M. and McIver, P., Handbook of mathematical techniques for wave/structure introductions (Chapman and Hall/CRC, Boca Raton, FL, 2001).CrossRefGoogle Scholar
Liu, Y., Teng, B., Cong, P., Liu, C. and Gou, Y., “Analytical study of wave diffraction and radiation by a submerged sphere in infinite water depth”, Ocean Engrg. 51 (2012) 129141 doi:10.1016/j.oceaneng.2012.05.004.CrossRefGoogle Scholar
Rahman, M., “Simulation of diffraction of ocean waves by a submerged sphere in finite depth”, Appl. Ocean Res. 23 (2001) 305317 doi:10.1016/S0141-1187(02)00003-2.CrossRefGoogle Scholar
Rhodes-Robinson, P. F., “Fundamental singularities in the theory of water waves with surface tension”, Bull. Aust. Math. Soc. 2 (1970) 317333 doi:10.1017/S0004972700042015.CrossRefGoogle Scholar
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J. and Liu, A. K., “Of ocean waves and ice sheets”, Annu. Rev. Fluid Mech. 27 (1995) 115168 doi:10.1146/annurev.fl.27.010195.000555.CrossRefGoogle Scholar
Srokosz, M. A., “The submerged sphere as an absorber of wave power”, J. Fluid Mech. 95 (1979) 717741 doi:10.1017/S002211207900166X.CrossRefGoogle Scholar
Thorne, R. C., “Multipole expansions in the theory of surface waves”, Math. Proc. Cambridge Philos. Soc. 49 (1953) 707716 doi:10.1017/S0305004100028905.CrossRefGoogle Scholar
Ursell, F., “On the heaving motion of a circular cylinder on the surface of a fluid”, Q. J. Mech. Appl. Math. 2 (1949) 218231 doi:10.1093/qjmam/2.2.218.CrossRefGoogle Scholar
Ursell, F., “Surface waves on deep water in the presence of a submerged cylinder. I”, Math. Proc. Cambridge Philos. Soc. 46 (1950) 141152 doi:10.1017/S0305004100025561.CrossRefGoogle Scholar
Ursell, F., “Surface waves on deep water in the presence of a submerged cylinder. II”, Math. Proc. Cambridge Philos. Soc. 46 (1950) 153158 doi:10.1017/S0305004100025573.CrossRefGoogle Scholar
Ursell, F., “The transmission of surface waves under surface obstacles”, Math. Proc. Cambridge Philos. Soc. 57 (1961) 638668 doi:10.1017/S0305004100035696.CrossRefGoogle Scholar
Ursell, F., “Slender oscillating ships at zero forward speed”, J. Fluid Mech. 14 (1962) 496516 doi:0.1017/S0022112062001408.CrossRefGoogle Scholar
Ursell, F., “The periodic heaving motion of a half-immersed sphere: the analytic form of the velocity potential, long-wave asymptotics of the virtual-mass coefficient”, Report for Fluid Dynamics Branch, U.S. Office of Naval Research, 1962.Google Scholar
Ursell, F., “The expansion of water wave potentials at great distances”, Math. Proc. Cambridge Philos. Soc. 64 (1968) 811826 doi:10.1017/S0305004100043516.CrossRefGoogle Scholar
Wang, S., “Motions of a spherical submarine in waves”, Ocean Engrg. 13 (1986) 249271 doi:10.1016/0029-8018(86)90018-1.CrossRefGoogle Scholar
Wehausen, J. V. and Laitone, E. V., “Surface waves”, in: Handbuch der Physik, Vol. IX (Springer, Berlin, 1960) 446–778; doi:10.1007/978-3-642-45944-3_6.Google Scholar
Wu, G. X., “Radiation and diffraction by a submerged sphere advancing in water waves of finite depth”, Proc. R. Soc. Lond. A 448 (1995) 2954 doi:10.1098/rspa.1995.0002.Google Scholar
Wu, G. X. and Eatock Taylor, R., “Radiation and diffraction of water waves by a submerged sphere at forward speed”, Proc. R. Soc. Lond. A 417 (1988) 433461 doi:10.1098/rspa.1988.0069.Google Scholar