Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T03:25:40.322Z Has data issue: false hasContentIssue false

A TWO-STRAIN EPIDEMIC MODEL WITH UNCERTAINTY IN THE INTERACTION

Published online by Cambridge University Press:  21 February 2013

M. G. ROBERTS*
Affiliation:
Institute of Natural & Mathematical Sciences, New Zealand Institute for Advanced Study and Infectious Disease Research Centre, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Annual epidemics of influenza A typically involve two subtypes, with a degree of cross-immunity. We present a model of an epidemic of two interacting viruses, where the degree of cross-immunity may be unknown. We treat the unknown as a second independent variable, and expand the dependent variables in orthogonal functions of this variable. The resulting set of differential equations is solved numerically. We show that if the population is initially more susceptible to one variant, if that variant invades earlier, or if it has a higher basic reproduction number than the other variant, then its dynamics are largely unaffected by cross-immunity. In contrast, the dynamics of the other variant may be considerably restricted.

MSC classification

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Society 

References

Abramowitz, M. and Stegun, I. A.(eds), Handbook of mathematical functions: with formulas, graphs and mathematical tables (Dover Publications, New York, 1972).Google Scholar
Andreasen, V., “Dynamics of annual influenza A epidemics with immuno-selection”, J. Math. Biol. 46 (2003) 504536; doi:10.1007/s00285-002-0186-2.CrossRefGoogle ScholarPubMed
Diekmann, O. and Heesterbeck, J. A. P., Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (John Wiley & Sons, Chichester, 2000).Google Scholar
Ferguson, N. M., Galvani, A. P. and Bush, R. M., “Ecological and immunological determinants of influenza evolution”, Nature 422 (2003) 428433; doi:10.1038/nature01509.CrossRefGoogle ScholarPubMed
Finkelman, B. S., Viboud, C., Koelle, K., Ferrari, M. J., Bharti, N. and Grenfell, B. T., “Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients”, PLoS ONE 2 (2007) e1296; doi:10.1371/journal.pone.0001296.CrossRefGoogle Scholar
Koelle, K., Cobey, S., Grenfell, B. T. and Pascual, M., “Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans”, Science 314 (2006) 18981903; doi:10.1126/science.1132745.CrossRefGoogle ScholarPubMed
Lopez, L. and Huang, Q. S., Influenza surveillance in New Zealand 2011 (Institute of Environmental Science and Research Ltd (ESR), Wellington, 2012), http://www.surv.esr.cri.nz/PDF_surveillance/Virology/FluAnnRpt/InfluenzaAnn2011.pdf.Google Scholar
Roberts, M. G., “The pluses and minuses of ${ \mathcal{R} }_{0} $”, J. R. Soc. Interface 4 (2007) 949961; doi:10.1098/rsif.2007.1031.CrossRefGoogle Scholar
Roberts, M. G., “The dynamics of seasonal influenza”, in: Design and Analysis of Infectious Disease Studies (organized by M. Eichner, E. Halloran and P. D. O’Neill), Oberwolfach Rep. 6 (2009) 2673–2698; doi:10.4171/OWR/2009/48.CrossRefGoogle Scholar
Roberts, M. G., “Epidemic models with uncertainty in the reproduction number”, J. Math. Biol., in press; doi:10.1007/s00285-012-0540-y.CrossRefGoogle Scholar
Xiu, D., Numerical methods for stochastic computations (Princeton University Press, Princeton, NJ, 2010).Google Scholar
Xiu, D. and Karniadakis, G. E., “The Wiener–Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput. 24 (2002) 619644; doi:10.1137/S1064827501387826.CrossRefGoogle Scholar