Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T12:43:35.382Z Has data issue: false hasContentIssue false

Acute ammonia toxicity during early ontogeny of chub, Leuciscus cephalus (Cyprinidae)

Published online by Cambridge University Press:  14 June 2011

Piotr Gomułka*
Affiliation:
Department of Ichthyology, University of Warmia and Mazury, Oczapowskiego 2, 10-917 Olsztyn, Poland
Daniel Żarski
Affiliation:
Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, pok.325, 10-957 Olsztyn, Poland
Dariusz Kucharczyk
Affiliation:
Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, pok.325, 10-957 Olsztyn, Poland
Krzysztof Kupren
Affiliation:
Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, pok.325, 10-957 Olsztyn, Poland
Sławomir Krejszeff
Affiliation:
Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, pok.325, 10-957 Olsztyn, Poland
Katarzyna Targońska
Affiliation:
Department of Lake and River Fisheries, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, pok.325, 10-957 Olsztyn, Poland
*
aCorresponding author: pgomulka@uwm.edu.pl
Get access

Abstract

Acute toxicity of ammonia was investigated in four life stages of juvenile chub, Leuciscus cephalus (cyprinid fish): 1, 10, 20 and 30 days after the first feeding. The fish used for the toxicity test were reared intensively in a closed recirculation system. Each acute toxicity test duration was 96 h and lethal concentration LC1, LC50 and LC99 values were calculated for 24, 48, 72 and 96 h. The susceptibility of chub to acute ammonia toxicity decreased linearly with age and stage of development. The LC50 (48 h) values ranged from 0.62 mg L-1 of unionized ammonia nitrogen for one day after first feeding larvae to 1.73 mg L-1 for 30 days after first feeding ones. A significant linear relationship between chub larvae susceptibility to ammonia toxicity and both body weight and length was found. The critical level of unionized ammonia nitrogen for chub larvae was suggested as 0.49 mg L-1.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, H.H., 2006, Acute toxicity of ammonia to common carp fingerlings (Cyprinus carpio) at different pH levels. Pak. J. Biol. Sci. 9, 22152221. Google Scholar
Barak, Y., van Rijn, J., 2000, Biological phosphate removal in a prototype recirculating aquaculture treatment system. Aquacult. Eng. 22, 121136. CrossRefGoogle Scholar
Biswas, J.K., Sarkar, D., Chakraborty, P., Bhakta, J.N., Jana, B.B. 2006, Density dependent ambient ammonium as the key factor for optimization of stocking density of common carp in small holding tanks. Aquaculture 261, 952959. CrossRefGoogle Scholar
Bolland, J.D., Cowx, I.G., Lucas, M.C., 2008, Movements and habitat use of wild and stocked juvenile chub, Leuciscus cephalus (L.), in a small lowland river. Fish. Manage. Ecol. 15, 401407. CrossRefGoogle Scholar
Brinkman, S.F., 2009, Chronic toxicity of ammonia to early life stage rainbow trout. Trans. Am. Fish. Soc. 138, 433440. CrossRefGoogle Scholar
Calamari, D., Marchetti, R., Vailati, G., 1977, Effects of prolonged treatments with ammonia on stages of development of Salmo gairdneri. (English translation used.) Nuovi Ann. Ig. Microbiol. 28, 333345. Google Scholar
Calamari, D., Marchetti, R., Vailati, G., 1981, Effects of long-term exposure to ammonia on the developmental stages of rainbow trout (Salmo gairdneri Richardson). Rapp. P.V. Reun. Cons. Int. Explor. Mer. 178, 8186. Google Scholar
Calta, M., 2000, Morphological development and growth of chub (Leuciscus cephalus L.) larvae. J. Appl. Ichthyol. 16, 8385. CrossRefGoogle Scholar
Cowx, I.G., 1994, Stocking strategies. Fish. Manage. Ecol. 1, 1530. CrossRefGoogle Scholar
Da¸browski K., 1984, The feeding of fish larvae, the present “state of the art” and perspectives. Reprod. Nutr. Develop. 24, 807833.
Economou, A.N., Daoulas, C., Psarras, T., 1991, Growth and morphological development of chub, Leuciscus cephalus (L.), during the first year of life. J. Fish Biol. 39, 393408. CrossRefGoogle Scholar
Fuiman, L.A., 1983, Growth gradients in fish larvae, J. Fish Biol. 23, 117123. CrossRefGoogle Scholar
Hajkova, K., Pulkrabova, J., Hajslova, J., Randak, T., Zlabek, V., 2007, Chub (Leuciscus cephalus) as a bioindicator of contamination of the Veltava river by synthetic musk fragrances. Arch. Environ. Contam. Toxicol. 53, 390396. CrossRefGoogle ScholarPubMed
Horvath, L., Szabo, T., Burke, J., 1997, Hatchery testing of GnRH analogue-containing pellets on ovulation in four cyprinid species. Pol. Arch. Hydrobiol. 44, 281285. Google Scholar
Karasu Benli, A.C., Köksal, G., 2005, The acute toxicity of ammonia on tilapia (Oreochromis niloticus L.) larvae and fingerlings. Turk J. Vet. Anim. Sci. 29, 339344. Google Scholar
Krejszeff, S., Targońska, K., Żarski, D., Kucharczyk, D., 2009, Domestication affects spawning of the ide (Leuciscus idus) – preliminary study. Aquaculture 295, 145147. CrossRefGoogle Scholar
Krejszeff, S., Targońska, K., Żarski, D., Kucharczyk, D., 2010, Comparison of artificial reproduction of different spawn-form of chub. Reprod. Biol. 10, 6774. CrossRefGoogle Scholar
Kucharczyk, D., Łuczyński, M., Kujawa, R., Czerkies, P., 1997, Effect of temperature on embryonic and larval development of bream (Abramis brama L.). Aquat. Sci. 59, 214224. Google Scholar
Kujawa, R., Kucharczyk, D., Mamcarz, A., 1997, Effect of temperature on embryonic development of asp (Aspius aspius L.). Pol. Arch. Hydrobiol. 44, 139143. Google Scholar
Kujawa, R., Kucharczyk, D., Mamcarz, A., 1999, A model system for keeping spawners of wild and domestic fish before artificial spawning. Aquacult. Eng. 20, 8589. CrossRefGoogle Scholar
Kupren, K., Turkowski, K., Kucharczyk, D., Krejszeff, S., Żarski, D., Hakuć-Błażowska, A., Targońska, K., Kwiatkowski, M., Jamróz, M., Czarkowski, T., 2008a, Economic aspects of rearing larval asp, Aspius aspius (L.), and ide, Leuciscus idus (L.), in closed recirculating systems. Arch. Pol. Fish. 16, 413420. CrossRefGoogle Scholar
Kupren, K., Mamcarz, A., Kucharczyk, D., Prusińska, M., Krejszeff, S., 2008b, Influence of water temperature on eggs incubation time and embryonic development of fish from genus Leuciscus. Pol. J. Nat. Sci. 23, 461-481. CrossRefGoogle Scholar
Meinelt, T., Kroupowa, H., Stüber, A., Rennert, B., Wienke, A., Steinberg, C.E.W., 2010, Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems? Aquaculture 306, 378383. CrossRefGoogle Scholar
Osse, J.W.M., Van den Boogaart, J.G.M., 1999, Dynamic morphology of fish larvae, structural implications of friction forces in swimming, feeding and ventilation. J. Fish Biol. 55, 156174. Google Scholar
Penaz, M., Prokes, M., Kouril, J., Hamackova, J., 1983, Early development of the carp, Cyprinus carpio. Acta Sci. Natur. Brno 17, 139. Google Scholar
Randall, D.J., Tsui, T.K.N., 2002, Ammonia toxicity in Fish. Ma. Poll. Bull. 45, 1723. CrossRefGoogle Scholar
Randall, D.J., Ip, Y.K., 2006, Ammonia as a respiratory gas in water and air-breathing fishes. Resp. Physiol. Neurobiol. 154, 216225. CrossRefGoogle ScholarPubMed
Remen, M., Imsland, A.K., Steffanson, S.O., Jonassen, T.M., Foss, A., 2008, Interactive effects of ammonia and oxygen on growth and physiological status of juvenile Atlantic cod (Gadus morhua). Aquaculture 274, 292299. CrossRefGoogle Scholar
Shiri Harzevili, A., De Charleroy, D., Auwerx, J., Vught, I., Van Slycken, J., 2003, Larval rearing of chub, Leuciscus cephalus (L.), using decapsulated Artemia as direct food. J. Appl. Ichthyol. 19, 123125. CrossRefGoogle Scholar
Svobodova, Z., Machova, J., Kroupova, H., Smutna, M., Groch, L., 2007, Ammonia autointoxication of common carp, case studies. Aquacult. Int. 15, 277286. CrossRefGoogle Scholar
Thurston, R.V., Chakoumakos, C., Russo, R.C., 1981, Effect of fluctuating exposures on the acute toxicity of ammonia to rainbow trout (Salmo gairdneri) and cutthroat trout (S. clarki). Water Res. 15, 911917. CrossRefGoogle Scholar
Thurston, R.V., Russo, R.C., 1983, Acute toxicity of ammonia to rainbow trout. Trans. Am. Fish. Soc. 112, 696704. 2.0.CO;2>CrossRefGoogle Scholar
Tomasso, J.R., Carmichae,, G.J., 1986, Acute toxicity of ammonia, nitrite, and nitrate to the Guadalupe bass, Micropterus treculi. Bull. Environ. Contam. Toxicol. 36, 866870. CrossRefGoogle ScholarPubMed
Treasurer, J.W., 2010, Remediation of ammonia accumulation during live transport of juvenile cod, Gadus morhua L., and the effects of fast period on ammonia levels and water quality. Aquaculture 308, 190195. CrossRefGoogle Scholar
van Rijn, J., 1996, The potential for integrated biological treatment systems in recirculating fish culture. A review. Aquaculture 139, 181201. CrossRefGoogle Scholar
Van Snik, G.M.J., Van den Boogaart, J.G.M., Osse, J.W.M., 1997, Larval growth patterns in Cyprinus carpio and Clarias gariepinus with attention to the finfold. J. Fish Biol. 50, 13391352. CrossRefGoogle Scholar
Vedel, N.E., Korsgaard, B., Jensen, F.B., 1998, Isolated and combined exposure to ammonia and nitrite in rainbow trout (Oncorhynchus mykiss): effects on electrolyte status, blood respiratory properties and brain glutamine/glutamate concentrations. Aquat. Toxicol. 41, 325342. CrossRefGoogle Scholar
Wicks,, B.J., Randall,, D.J., 2002, The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation of ammonia. Comp. Biochem. Physiol. Part A 132, 275285. CrossRefGoogle Scholar
Wolnicki, J., Sikorska, J., Kamiński, R., 2009, Response of larval and juvenile rudd Scardinius erythrophthalmus (L.) to different diets under controlled conditions. Czech J. Anim. Sci. 54, 331337. Google Scholar
Wood C.M., 1993, Ammonia and urea metabolism and excretion. In: Ewans D.H. (Ed.), Physiology of Fishes, CRC Press Boca Raton, pp. 379–425.
Wood, C.M., 2004, Dogmas and controversies in the handling of nitrogenous wastes: Is exogenous ammonia a growth stimulant in fish?. J Exp. Biol. 207, 20432054. CrossRefGoogle Scholar
Żarski, D., Kucharczyk, D., Targońska, K., Krejszeff, S., Czarkowski, T., Babiarz, E., Nowosielska, D.B., 2010, Dynamics of nitrogen and phosphorus in closed and semi-closed recirculating aquaculture systems during the intensive culture of goldfish, Carassius auratus auratus (L.), juveniles. Arch. Pol. Fish. 18, 187193. CrossRefGoogle Scholar
Żarski D., Targońska K., Krejszeff S., Kwiatkowski M., Kupren K., Kucharczyk D., 2011, Influence of stocking density and type of feed on the rearing of crucian carp, Carassius carassius (L.), larvae under controlled conditions. Aquacult. Int. (in press), http://www.springerlink.com/content/774360nv3u049174/fulltext.pdf.