Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T04:42:05.976Z Has data issue: false hasContentIssue false

Are sex ratios in wild European sea bass (Dicentrarchuslabrax) populations biased?

Published online by Cambridge University Press:  22 March 2012

Marc Vandeputte*
Affiliation:
INRA, UMR1313 GABI Génétique animale et Biologie intégrative, 78350 Jouy-en-Josas, France Ifremer, UMR110 INTREPID, chemin de Maguelone, 34250 Palavas-les-Flots, France AgroParisTech, UMR1313 GABI, 16 rue Claude Bernard, 75231 Paris, France
Edwige Quillet
Affiliation:
INRA, UMR1313 GABI Génétique animale et Biologie intégrative, 78350 Jouy-en-Josas, France
Béatrice Chatain
Affiliation:
Ifremer, UMR110 INTREPID, chemin de Maguelone, 34250 Palavas-les-Flots, France
*
a Corresponding author: marc.vandeputte@jouy.inra.fr
Get access

Abstract

Sex ratios in farmed European sea bass are highly biased towards males (75 to 95%), which is problematic for aquaculture. In this mini-review, we re-analyse fisheries literature data about sex ratios in wild sea bass from 13 population samples, representing altogether 4889 individuals covering the major part of the distribution range of the species. We find that as a whole, the sex ratio of wild populations is biased towards females (59.4% females, p < 0.001), but that the sex ratio of the younger fish (<30 cm total length) is balanced (52.0% females, p = 0.15), while the sex ratio of the older fish is heavily biased towards females (69.5% females, p < 0.01). Possible causes of these differences (differential longevity, biased sampling) are discussed. When age-group sex ratios are available (three population samples out of 13), significant variation between age groups appears, part of which is most likely of environmental origin. This study shows that the excess of males in culture is not a characteristic of the species, but rather a consequence of the environments used in culture, interacting with a complex system where both environmental and genetic influences govern sex determination in sea bass.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arias, A., 1980, Crecimento, régimen alimentario y reproduccion de la dorada (Sparus aurata L.) y del robalo (Dicentrarchus labrax L.) en los esteros de Cadiz. Invest. Pesq. 44, 5983.Google Scholar
Bahri-Sfar, L., Lemaire, C., Ben Hassine, O.K., Bonhomme, F., 2000, Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. B 267, 929935.CrossRefGoogle ScholarPubMed
Barnabé, G., 1973, Étude morphologique du loup Dicentrarchus labrax L. de la région de Sète. Rev. Trav. Inst. Pêches Marit. 37, 397410.Google Scholar
Baroiller, J.F., D'Cotta, H., Saillant, E., 2009, Environmental effects on fish sex determination and differentiation. Sexual Develop. 3, 118135.CrossRefGoogle ScholarPubMed
Blazquez, M., Carrillo, M., Zanuy, S., Piferrer, F., 1999, Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. J. Fish Biol. 55, 916930.CrossRefGoogle Scholar
Bulmer, M.G., Bull, J.J., 1982, Models of polygenic sex determination and sex ratio control. Evolution 36, 1326.CrossRefGoogle ScholarPubMed
Charnov, E.L., Bull, J.J., 1977, When is sex environmentally determined? Nature 266, 828830.CrossRefGoogle ScholarPubMed
Conover, D.O., 1984, Adaptive significance of temperature-dependent sex determination in a fish. Am. Nat. 123, 297313.CrossRefGoogle Scholar
Ergene, S., 1999, Growth properties of bass (Dicentrarchus labrax (L., 1758), Perciformes: Serranidae) live in Akgöl-Paradeniz Lagoon in Göksu Delta. Turk. J. Zool. 23, 657664.Google Scholar
Fisher R.A., 1930, The genetical theory of natural selection. Oxford University Press, Oxford.
Fritsch, M., Morizur, Y., Lambert, E., Bonhomme, F., Guinand, B., 2007, Assessment of sea bass (Dicentrarchus labrax L.) stock delimitation in the Bay of Biscay and the English Channel based on mark-recapture and genetic data. Fish. Res. 83, 123132.CrossRefGoogle Scholar
Hatcher M.J., Tofts C., 1995, The evolution of polygenic sex determination with potential for environmental manipulation. UMCS, Univ. Manchester, Dep. Comput. Sci. Techn. Rep. 95–4–2.
Kara, H., 1997, Cycle sexuel et fécondité du loup Dicentrachus labrax (Poisson Moronidé) du golfe d'Annaba. Cah. Biol. Mar. 38, 161168.Google Scholar
Kelley, D.F., 1988, Age determination in bass and assessment of growth and year-class strength. J. Mar. Biol. Assoc. UK 68, 179214.CrossRefGoogle Scholar
Kennedy, M., Fitzmaurice, P., 1972, The biology of the bass, Dicentrarchus labrax, in Irish waters. J. Mar. Biol. Assoc. UK 52, 557597.CrossRefGoogle Scholar
Lagomarsino, I.V., Conover, D.O., 1993, Variation in environmental and genotypic sex-determining mechanisms across a latitudinal gradient in the fish, Menidia menidia. Evolution 47, 487494.CrossRefGoogle ScholarPubMed
McGaugh, S.E., Janzen, F.J., 2011, Effective heritability of targets of sex-ratio selection under environmental sex determination. J. Evol. Biol. 24, 784794.CrossRefGoogle Scholar
Naciri, M., Lemaire, C., Borsa, P., Bonhomme, F., 1999, Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J. Hered. 90, 591596.CrossRefGoogle Scholar
Navarro-Martin, L., Blazquez, M., Vinas, J., Joly, S., Piferrer, F., 2009, Balancing the effects of rearing at low temperature during early development on sex ratios, growth and maturation in the European sea bass (Dicentrarchus labrax): Limitations and opportunities for the production of highly female-biased stocks. Aquaculture 296, 347358.CrossRefGoogle Scholar
Pawson, M.G., Pickett, G.D., 1996, The annual pattern of condition and maturity in bass, Dicentrarchus labrax, in waters around England and Wales. J. Mar. Biol. Assoc. UK 76, 107125.CrossRefGoogle Scholar
Pen, I., Uller, T., Feldmeyer, B., Harts, A., While, G.M., Wapstra, E., 2010, Climate-driven population divergence in sex-determining systems. Nature 468, 436438.CrossRefGoogle ScholarPubMed
Pickett G.D., Pawson M.G., 1994, Seabass – biology, exploitation and conservation. Chapman & Hall, London.
Piferrer, F., Blazquez, M., Navarro, L., Gonzalez, A., 2005, Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comp. Endocrinol. 142, 102110.CrossRefGoogle Scholar
Rice, W.R., 1986, On the instability of polygenic sex determination: the effect of sex-specific selection. Evolution 40, 633639.Google ScholarPubMed
Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J., Chatain, B., 2002, Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494505.CrossRefGoogle Scholar
Saillant, E., Fostier, A., Menu, B., Haffray, P., Chatain, B., 2001, Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371387.CrossRefGoogle Scholar
Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007, A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 10491057.CrossRefGoogle Scholar
Vandeputte, M., Dupont-Nivet, M., Haffray, P., Chavanne, H., Cenadelli, S., Parati, K., Vidal, M.O., Vergnet, A., Chatain, B., 2009, Response to domestication and selection for growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks. Aquaculture 286, 2027.CrossRefGoogle Scholar
Wassef, E., El Emary, H., 1989, Contribution to the biology of bass, Dicentrarchus labrax L. in the Egyptian Mediterranean waters off Alexandria. Cybium 13, 327345.Google Scholar