Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T13:15:11.634Z Has data issue: false hasContentIssue false

Discrimination of red mullet populations (Teleostean,Mullidae) along multi-spatial and ontogenetic scales within the Mediterraneanbasin on the basis of otolith shape analysis*

Published online by Cambridge University Press:  02 January 2012

Fabien Morat
Affiliation:
Centre d’Océanologie de Marseille, Université de la Méditerranée, UMR CNRS 6540 DIMAR, Campus universitaire de Luminy, Case 901 13288 Marseille Cedex 09 France
Yves Letourneur*
Affiliation:
Université de la Nouvelle-Calédonie, Laboratoire LIVE, 145 avenue James Cook, BP R4, 98851 Nouméa Cedex New Caledonia
David Nérini
Affiliation:
Centre d’Océanologie de Marseille, Université de la Méditerranée, UMR CNRS 6117 LMGEM, Campus universitaire de Luminy, Case 901 13288 Marseille Cedex 09 France
Daniela Banaru
Affiliation:
Centre d’Océanologie de Marseille, Université de la Méditerranée, UMR CNRS 6117 LMGEM, Campus universitaire de Luminy, Case 901 13288 Marseille Cedex 09 France University Ovidius of Constanta, 124 bd Mamaia 900527 Constanta Romania
Ioannis E. Batjakas
Affiliation:
University of the AegeanDepartment of Marine Sciences, University Hill, 81100 Mytilini Lesvos Island Greece
*
a Corresponding author: yves.letourneur@univ-nc.nc
Get access

Abstract

Otolith shape analyses were conducted on three different species of Mullidae (Mullus barbatus barbatus, M. b. ponticus and M. surmuletus). The otolith shape was described by 19 harmonics from elliptic Fourier descriptors. In a first step, their comparison through canonical discriminant analyses (CDA) was run for all fish with right otoliths, left otoliths and both otoliths pooled. The latter possibility had a higher discriminating power and allowed much more visually explicit results. This implied that the two otoliths were not similar as often claimed, and had each their specific information. In a second step, the CDA demonstrated strong spatial discrimination of local populations from various areas within the Mediterranean basin, i.e. NW Mediterranean, Aegean Sea and Black Sea, and between sites within each area. The percentage of well classified individuals of M. barbatus in predefined groups varied between 78 to 100% depending on sites, and even reached 100% for each site for M. surmuletus. These spatial patterns were most likely linked to differences in environmental conditions between areas and sites, such as effects of strong river runoffs and differences in depths and/or habitat types. In a third step, CDA also evidenced ontogenetic discriminations of mullet populations that could be linked (i) to influence of diet of fish of various sizes and (ii) to changes in physiological conditions according to the stage of development of the fish.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supporting information is only available in electronic form at http://www.alr-journal.org

References

Aguirre, H., Lombarte, A., 1999, Ecomorphological comparison of sagittae of Mullus barbatus and M. surmulletus. J. Fish Biol. 55, 105114. Google Scholar
Aldebert, Y., 1997, Demersal resources of the Gulf of Lions (NW Mediterranean). Impact of exploitation on fish diversity. Vie Milieu 47, 275284.Google Scholar
Banaru, D., Harmelin-Vivien, M.L., 2007, Variations spatio-temporelles de la signature en isotopes stables (d13C et d15N) des eaux du Danube et des communautés marines sur les côtes roumaines de la mer Noire. Cybium 31, 167174. Google Scholar
Bautista-Vega, A.A., Letourneur, Y., Harmelin-Vivien, M.L., Salen-Picard, C., 2008, Difference in diet and size-related trophic level in two sympatric fish species, the red mullets Mullus barbatus and M. surmuletus, in the Gulf of Lions (NW Mediterranean). J. Fish Biol. 73, 24022420.CrossRefGoogle Scholar
Begg, G.A., Overholtz, W.J., Munroe, N.J., 2001, The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on George Bank. Fish. Bull. 99, 114. Google Scholar
Bolles, K.L., Begg, G.A., 2000, Distinction between silver hake (Merluccius bilineariz) stocks in U.S. waters of the northwest Atlantic using whole otolith morphometric. Fish. Bull. 98, 451462.Google Scholar
Borelli, G., Guibbolini, M.E., Mayer-Gostan, N., Priouzeau, F., De Pontual, H., Allemand, D., Puverel, S., Tambutte, E., Payan, P., 2003, Daily variations of endolymph composition: relationship with the otolith calcification process in trout. J. Exp. Biol. 206, 26852692.CrossRefGoogle ScholarPubMed
Campana, S.E., Casselman, J.M., 1993, Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50, 10621082.CrossRefGoogle Scholar
Campana, S.E., Neilson, J.D., 1985, Mircrostructure of fish otoliths. Can. J. Fish. Aquat. Sci. 42, 10141031.CrossRefGoogle Scholar
Campillo A., 1992, Les pêcheries françaises de Méditerranée : synthèse des connaissances. IFREMER, RIDRV-92/019- RH Sète.
Cardinale, M., Doering-Arjes, P., Kastowsky, M., Mosegaard, H., 2004, Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 61, 158167.CrossRefGoogle Scholar
Crampton, J.S., 1995, Elliptic Fourier shape analysis of fossil bivalves, practical considerations. Lethaia 28, 179186.CrossRefGoogle Scholar
Farrugio, H., Olivier, P., Biagi, F., 1993, An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci. Mar. 57, 105119.Google Scholar
Ferraton, F., Harmelin-Vivien, M.L., Mellon-Duval, C., Souplet, A., 2007, Does spatio-temporal variation in diet affect condition and abundance of European hake (Merluccius merluccius) juveniles in the Gulf of Lions (NW Mediterranean)? Mar. Ecol. Prog. Ser. 337, 197208.CrossRefGoogle Scholar
Fisher W., Bauchot M., Scheinder M., 1987, Fiches FAO d'identification des espèces pour les besoins de la pêche (Révision 1). Méditerranée et mer Noire, zone de pêche 37, Vol. 2, CEE, FAO publ., Rome, 761–1530.
Friedland, K.D., Reddin, D.G., 1994, Use of otolith morphology in stock discrimination of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51, 9198.CrossRefGoogle Scholar
Gagliano, M., McCormick, M.I., 2004, Feeding history influences otolith shape in tropical fish. Mar. Ecol. Prog. Ser. 278, 291296.CrossRefGoogle Scholar
Gaertner, J.C., Bertrand, J.A., Gil de Sola, L., Durbec, J.P., Ferrandis, E., Souplet, A., 2005, Large spatial scale variation of demersal fish assemblage on the continental shelf of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 297, 245257.CrossRefGoogle Scholar
Gaertner, J.C., Chessel, D., Bertrand, J.A., 1997, Stability of spatial structures of demersal assemblages: a multitable approach. Aquat. Living Resour. 11, 7585.CrossRefGoogle Scholar
Gauldie, R.W., Crampton, J.S., 2002, An eco-morphological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. J. Fish Biol. 60, 12041221.CrossRefGoogle Scholar
Gonzalez-Salas, C., Lenfant, P., 2007, Interannual variability and intraannual stability of the otolith shape in European anchovy Engraulis encrasicolus (L.) in the Bay of Biscay. J. Fish Biol. 70, 3549.CrossRefGoogle Scholar
Graf, W., Baker, R., 1983, Adaptive changes of the vestibulo-ocular reflex in flatfish are achieved by reorganization of central nervous pathways. Science 221, 777779.CrossRefGoogle ScholarPubMed
Høie, H., Otterlei, E., Folkvord, A., 2004, Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES J. Mar. Sci. 61, 243251.CrossRefGoogle Scholar
Hüssy, K., 2008, Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Biol. Ecol. 364, 3541.CrossRefGoogle Scholar
Iwata, H., Ukai, Y., 2002, Shape: a computer program package for quantitative evaluation of biological shapes based on Elliptic Fourier descriptors. J. Hered. 93, 384385.CrossRefGoogle ScholarPubMed
Kuhl, F.P., Giardina, C.R., 1982, Elliptic Fourier features of a closed contour. Comput. Graph. Image Process 18, 236258.CrossRefGoogle Scholar
Lilliendahl, K., Solmundsson, J., 2006, Feeding ecology of sympatric European shags Phalacrocorax aristotelis and great cormorants P. carbo in Iceland. Mar. Biol. 149, 979990.CrossRefGoogle Scholar
Loher, T., Wischniowski, S., Martin, G.B., 2008, Elemental chemistry of left and right sagittal otoliths in a marine fish Hippoglossus stenolepis displaying cranial asymmetry. J. Fish Biol. 73, 870887.CrossRefGoogle Scholar
Lychakov, D.V., Rebane, Y.T., 2000, Otolith regularities. Hear. Res. 143, 83102.CrossRefGoogle ScholarPubMed
Lychakov, D.V., Rebane, Y.T., 2005, Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hear. Res. 201, 5569.CrossRefGoogle ScholarPubMed
Lychakov, D.V., Rebane, Y.T., Lombarte, A., Demestres, M., Fuiman, L.A., 2008, Saccular otolith mass asymmetry in adult flatfishes. J. Fish Biol. 72, 25792594.CrossRefGoogle Scholar
Mérigot, B., Batjakas, I.E., Letourneur, Y., 2006, Fish community structure of two Greek close gulfs (Lesvos Island, Aegean Sea). Cybium 30, 7981.Google Scholar
Mérigot, B., Letourneur, Y., Lecomte-Finiger, R., 2007, Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 151, 9971008.CrossRefGoogle Scholar
Millot, C., 1999, Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20, 423442.CrossRefGoogle Scholar
Palmer, M., Linde, M., Morales-Nin, B., 2010, Disentangling fluctuating asymmetry from otolith shape. Mar. Ecol. Prog. Ser. 399, 261272.CrossRefGoogle Scholar
Parmentier, E., Vandewalle, P., Lagardère, F., 2001, Morpho-anatomy of the otic region in carapid fishes: ecomorphological study of their otoliths. J. Fish Biol. 58, 10461068.CrossRefGoogle Scholar
Payan, P., De Pontual, H., Edeyer, A., Borelli, G., Boeuf, G., Mayer-Gostan, N., 2004, Effects of stress on plasma homeostasis, endolymph chemistry, and check formation during otolith growth in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 61, 12471255.CrossRefGoogle Scholar
Popper, A.N., Combs, S., 1980, Auditory mechanisms in teleost fishes. Am. Sci. 68, 429440.Google Scholar
Popper, A.N., Ramcharitar, J., Campana, S.E., 2005, Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 56, 497504.CrossRefGoogle Scholar
Pont, D., Simonnet, J.P., Walter, A.V., 2002, Medium-term Changes in Suspended Sediment Delivery to the Ocean: Consequences of Catchment Heterogeneity and River Management (Rhône River, France). Estuar. Coast. Shelf Sci. 54, 118.CrossRefGoogle Scholar
Quéro J.C., Vayne J.J., 1997, Les poissons de mer des pêches françaises. Delachaux & Niestlé, Paris.
Ramsay J.O., Silverman B.W., 2005, Functional Data Analysis, Springer, New-York.
Salen-Picard, C., Darnaude, A., Arlhac, D., Harmelin-Vivien, M.L., 2002, Fluctuations of macrobenthic populations: a link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia 133, 380388.CrossRefGoogle ScholarPubMed
Sempéré, R., Charrière, B., Van Wambeke, F., Cauwet, G., 2000, Carbon inputs of the Rhône river to the Mediterranean Sea: biogeochemical implications. Glob. Biogeochem. Cycle 14, 669681.CrossRefGoogle Scholar
Smith, M.K., 1992, Regional differences in otolith morphology of the deep slope red snapper Etelius carbunculus. Can. J. Fish. Aquat. Sci. 49, 795804.CrossRefGoogle Scholar
Stransky, C., MacLellan, S.E., 2005, Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci. 62, 22652276.CrossRefGoogle Scholar
Titus, K., Mosher, J.A., Williams, B.K., 1984, Chance-corrected classification for use in discriminant analysis : ecological applications. Am. Midl. Nat. 111, 17.CrossRefGoogle Scholar
Toole, C.L., Markle, D.F., Harris, P.M., 1993, Relationship between otolith microstructure, microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fish. Bull. 91, 732753.Google Scholar
Tuset, V.M., Lozano, I.J., Gonzalez, J.A., Pertusa, J.F., Garcia-Diaz, M.M., 2003, Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). J. Appl. Ichthyol. 19, 8893.CrossRefGoogle Scholar
van Dongen, S., Lens, L., 2000, Symmetry, size and stress. Trends Ecol. Evol. 15, 330331CrossRefGoogle Scholar
Volpedo, A., Echeverria, D.D., 2003, Ecomorphological patterns of the sagitta in fish on the continental shelf off Argentine. Fish. Res. 60, 551560. CrossRefGoogle Scholar
Winkels, H.J., Kroonenberg, S.B., Lychagin, M.Y., Marin, G., Rusakov, G.V., Kasimov, N.S., 1998, Geochronology of priority pollutants in sedimentation zones of the Volga and Danube delta in comparison with the Rhine delta. Appl. Geochem. 13, 581591.CrossRefGoogle Scholar
Supplementary material: PDF

OLM - alr110052 - 25(1) 2012 p.27 - Discrimination of red mullet...

Table S1 and FigS1-S2

Download OLM - alr110052 - 25(1) 2012 p.27 - Discrimination of red mullet...(PDF)
PDF 116.7 KB