Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:31:19.310Z Has data issue: false hasContentIssue false

Discrimination of Trisopterus luscusstocks in northern Portugal using otolith elementalfingerprints

Published online by Cambridge University Press:  18 March 2011

Diogo Manuel Silva
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Paulo Santos
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
Alberto Teodorico Correia*
Affiliation:
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal Centro Interdisciplinar de Alterações Globais e Bioengenharia (CIAGEB) / Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos Maia, 296, 4200-150 Porto, Portugal
*
Get access

Abstract

The pout, Trisopterus luscus, is one of the most important gadoid fishcaptured by northern Portuguese traditional fisheries. In spite of a substantial decreasein fish catches, little data are available either on the population structure or on themanagement of the species. In this study, chemical analysis with inductively coupledplasma mass spectrometry of whole otoliths of 90 pouts (age group 2, total length:17.9–25.0 cm) provided location-specific elemental signatures. Sampling took place inshallow waters along the coastline in three fishing grounds off the Portuguese north coast(Viana do Castelo, Matosinhos and Aveiro) between February and March 2010. Otolithfingerprint analysis detected the presence of several informative trace elements. Molarconcentrations for each site were analysed through uni- and multivariate statisticaltests. Strontium, barium, magnesium and lithium (Sr, Ba, Mg and Li) differed significantlyamong locations, while no significant differences were found for manganese (Mn) and nickel(Ni). Canonical analysis allowed us to discriminate the tested individuals with respect totheir sampling origin with a mean classification accuracy of 69%. The observedsite-specific elemental differences in pout otoliths suggest a high level of site-fidelityin relation to their growing/feeding areas. Pouts from these locations can be regarded asa single, although not necessary homogenous, stock. Furthermore, this study also suggeststhat the populations of juvenile fish mix partially and, therefore, cannot be assumed tobe separate units for fisheries management purposes.

Type
Brief Report
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso-Fernández, A., Domínguez-Petit, R., Bao, M., Rivas, C., Saborido-Rey, F., 2008, Spawning pattern and reproductive strategy of female pouting Trisopterus luscus (Gadidae) on the Galician shelf of north-western Spain. Aquat. Living Resour. 21, 383-393. CrossRefGoogle Scholar
Arslan, Z., Secor, D.H., 2005, Analysis of trace transition elements and heavy metals in fish otoliths as tracers of habitat use by American eels in the Hudson River Estuary. Estuaries 28, 382-393. CrossRefGoogle Scholar
Bath, G.E., Thorrold, S.R., Jones, C.M., Campana, S.E., McLaren, J.W., Lam, W.H., 2000, Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 64, 1705-1714. CrossRefGoogle Scholar
Blacker RW (1974) Recent advances in otolith studies. In: Harden Jones H (ed) Sea Fisheries Research. Elek Sc Lond, pp. 67-69.
Brown, R.J., Severin, K.P., 2009, Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 66, 1790-1808. Google Scholar
Cabral, H.N., Duque, J., Costa, M.J., 2000, Importance of the coastal zone adjacent to the Tagus estuary as a nursery area for fish. Thalassa 16, 27-32. Google Scholar
Campana, S.E., 1999, Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263-297. CrossRefGoogle Scholar
Campana, S.E., Chouinard, G.A., Hanson, J.M., Fréchet, A., Brattey, J., 2000, Otolith elemental fingerprints as biological tracers of fish stock. Fish. Res. 46, 343-357. CrossRefGoogle Scholar
Campana, S.E., Fowler, A.J., Jones, C.M., 1994, Otolith elemental fingerprint for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can. J. Fish Aquat. Sci. 51, 1942-1950. CrossRefGoogle Scholar
Campana, S.E., Gagné, J.A., McLaren, J.W., 1995, Elemental fingerprint of fish otoliths using ID-ICPMS. Mar. Ecol. Prog. Ser. 122, 115-120. CrossRefGoogle Scholar
Campana, S.E., Thorrold, S.R., 2001, Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci. 58, 30-38. CrossRefGoogle Scholar
Campana, S.E., Valentin, A., Sévigny, J.M., Power, D., 2007, Tracking fish seasonal migrations of redfish (Sebastes spp.) in an around Gulf of St. Lawrence using otolith elemental fingerprints movements. Can. J. Aquat. Fish. Sci. 64, 6-18. CrossRefGoogle Scholar
Chevey, P., 1929, Poissons côtiers – Le tacaud (Gadus luscus). Résumé de nos connaissances actuelles sur ce poisson. Rev. Trav. Off. Pêches Marit. 2, 73-94. Google Scholar
Cohen D.M., Inada T., Iwamoto T., Scialabba N., 1990, FAO Species Catalogue. Gadiform Fishes of the World (Order Gadiformes). FAO Fisheries Synopsis, No. 125, Vol. 10.
Couto C., Pinto I., Rocha M.J., Almeida A., 2010, Spatial and temporal monitorization of metals in Leça river (Portugal). SETAC Europe 20th Annual Meeting. MO 062. 23-27 May 2010, Seville.
Costa, M.J., Cabral, H.N., 1999, Changes in the Tagus nursery function for commercial fish species: some perspectives for management. Aquat. Ecol. 33, 287-292. CrossRefGoogle Scholar
DATAPESCAS, 2009, Datapescas: Janeiro a Decembro 2009, no 83, pp:15. http://norteemrede.inescporto.pt/financiamentos/PO-Pesca/outradocumentacao/publicacoes/datapescas.
Desmarchelier M., 1986, Contribution à l’étude de la biologie des populations de tacauds Trisopterus luscus (L. 1758) en Manche orientale et dans le sud de la mer du Nord. PhD Dissertation. University of Sciences and Techniques, Lille.
Elsdon, T.S., Wells, B.K., Campana, S.E., Gillanders, B.M., Jones, C.M., Limburg, K.E., Secor, D.H., Thorrold, S.R., Walther, B.D., 2008, Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Ann. Rev. 46, 297-330. Google Scholar
Ferreiro, M.J., Labarta, U., 1988, Distribution and abundance of teleostean eggs and larvae on the NW coast of Spain. Mar. Ecol. Prog. Ser. 43, 189-199. CrossRefGoogle Scholar
França, S., Vinagre, C., Costa, M.J., Cabral, H.N., 2004, Use of the coastal areas adjacents to the Douro estuary as a nursery area for pouting, Trisopterus luscus Linnaeus, 1758. J. Appl. Ichthyol. 20, 99-104. CrossRefGoogle Scholar
Geffen, A.J., Jarvis, K., Thorpe, J.P., Leah, R.T., Nasha, R.D.M., 2003, Spatial differences in the trace element concentrations of Irish Sea plaice Pleuronectes platessa and whiting Merlangius merlangus otoliths. J. Sea Res. 50, 245-254. CrossRefGoogle Scholar
Gherbi-Barré A., 1983, Biologie de Trisopterus luscus (L. 1758) de la baie de Douarnenez (reproduction, croissance, régime alimentaire). PhD Dissertation, UBO, Brest University.
Gibb, F.M., Gibb, I-M., Wright, P.J., 2007, Isolation of Atlantic cod (Gadus morhua) nursery areas. Mar. Biol. 151, 11851194. CrossRefGoogle Scholar
Gillanders, B.M., 2002, Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar. Ecol. Prog. Ser. 240, 215-223. CrossRefGoogle Scholar
Gillanders, B.M., Kingsford, M.J., 2003, Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Estuar. Coast. Shelf Sci. 57, 1049-1064. CrossRefGoogle Scholar
Hamer, P.A., Jenkins, G.P., Gillanders, B.M., 2005, Chemical tags in otoliths indicate the importance of local and distant settlement areas to populations of a temperate sparid, Pagrus auratus. Can. J. Fish. Aquat. Sci. 62, 623-630. CrossRefGoogle Scholar
Hamerlynck, O., Hostens, K., 1993, Growth, feeding, production, and consumption in 0-group bib (Trisopterus luscus L.) and whiting (Merlangius merlangus L.) in a shallow coastal area of the south-west Netherlands. ICES J. Mar. Sci. 50, 81-91. CrossRefGoogle Scholar
INE, 2010, Estatísticas da Pesca 2009. pp:101. http://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes.
Jónsdóttir, G., Campana, S.E., Marteinsdottir, D., 2006, Stock structure of Icelandic cod Gadus morhua L. based on otolith chemistry. J. Fish Biol. 69, 136-150. CrossRefGoogle Scholar
Macdonald, J.I., Crook, D.A., 2010, Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 413, 147-161. CrossRefGoogle Scholar
Magalhães, C., Costa, J., Teixeira, C., Bordalo, A.A., 2007, Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Mar. Chem. 107, 332-341. CrossRefGoogle Scholar
Merayo, C.R., 1996, Reproduction and fecundity of the bib Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) in the central region of the Cantabrian Sea (northern Spain). Bol. Inst. Esp. Oceanogr. 12, 17-29. Google Scholar
Merayo, C.R., Villegas, M.L., 1994, Age and growth of Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) off the coast of Asturias. Hydrobiologia 281, 115-122. CrossRefGoogle Scholar
Milton, D.A., Chenery, S.R., 2001, Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J. Exp. Mar. Biol. Ecol. 264, 47-65. CrossRefGoogle Scholar
Miramontes-Sequeiros, L.C., Palanca-Castán, N., Palanca-Soler, A., 2009, Anatomical differences among Atlantic and Mediterranean populations of Trisopterus luscus (Pisces). Aquat. Biol. 7, 243-247. Google Scholar
Mucha, A.P., Bordalo, A.A., Vasconcelos, M.T., 2004, Sediment quality in the Douro estuary based on trace metals contents, macrobenthic community and elutriate sediment toxicity test (ESTT). J. Environ. Monit. 6, 585-592. CrossRefGoogle Scholar
Murua, H., Saborido-Rey, F., 2003, Female reproductive strategies of marine fish species of the North Atlantic. J. Northw. Atl. Fish. Sci. 33, 23-31. CrossRefGoogle Scholar
Netzband A., 2006, Sediment management: an essential element of river basin management plans. Report on the SedNet Round Table Discussion, Venice.
Panfili J., Pontual H., Troadec H., Wright P., 2002, Manual of Sclerochronoly. IFREMER-IRD Coedition, Brest.
Patterson, H.M., Thorrold, S.R., Shenker, J.M., 1999, Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICPMS. Coral Reefs 18, 171-178. CrossRefGoogle Scholar
Puente, E., 1988, Edad y crecimiento de la faneca Trisopterus luscus (Linnaeus, 1758) (Pisces, Gadidae) en la costa atlântica francesa. Bol. Inst. Esp. Oceanogr. 5, 37-56. Google Scholar
Popper, A.N., Ramcharitar, J., Campana, S.E., 2005, Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 56, 479-504. CrossRefGoogle Scholar
Ramalhosa, E., Pereira, E., Vale, C., Válega, M., Monterroso, P., Duarte, A.C., 2005, Mercury distribution in Douro estuary. Mar. Pollut. Bull. 50, 1218-1222. CrossRefGoogle ScholarPubMed
Ranaldia, M.M., Gagnon, M.M., 2010, Trace metal incorporation in otoliths of pink snapper (Pagrus auratus) as an environmental monitor. Comp. Biochem. Physiol. Part C, 152, 248-255 Google Scholar
Rooker, J.R., Secor, D.H., De Metrio, G., Schloesser, R., Block, B.A., Neilson, J.D., 2008, Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742-744. CrossRefGoogle ScholarPubMed
Rooker, J.R., Zdanowicz, V.S., Secor, D.H., 2001, Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar. Biol. 139, 35-43. Google Scholar
Sandin, S.A., Regetz, J., Hamiltion, S.L., 2005, Testing larval fish dispersal hypothesis using maximum likelihood analysis of otolith chemistry data. 2005. Mar. Freshw. Res. 56, 725-734. CrossRefGoogle Scholar
Secor, D.H., Piccoli, P.M., 2007, Oceanic migration rates of Upper Chesapeake Bay striped bass (Morone saxatilis) determined by otolith microchemical analysis. Fish. Bull. 105, 62-73. Google Scholar
Svetovidov A.N., 1986, Gadidae. In: Whitehead JP, Bauchot ML, Hureau JC, Tortonese E (eds) Fishes of the North-Eastern Atlantic and the Mediterranean, UNESCO, Paris, pp. 680-710.
Tanner, S.E., Fonseca, V.F., Cabral, H.N., 2009, Condition of 0-group and adult pouting, Trisopterus luscus L., along the Portuguese coast: evidence of habitat quality and latitudinal trends. J. Appl. Ichthyol. 25, 387-393. CrossRefGoogle Scholar
Tobin, D., Wright, P.J., Gibb, F.M., Gibb, I.M, 2010, The importance of life stage to population connectivity in whiting (Merlangius merlangus) from the northern European shelf. Mar. Biol. 157, 1063-1073. CrossRefGoogle Scholar
Thresher, R.E., 1999, Elemental composition of otoliths as a stock delineator in fishes. Fish. Res. 43, 165-204. CrossRefGoogle Scholar
Vasconcelos, R., Reis-Santos, P., Tanner, S., Maia, A., Latkoczy, C., Günther, D., Costa, M.J., Cabral, H., 2008, Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci. 79, 317-327. CrossRefGoogle Scholar
Vieira, M.E.C., Bordalo, A.A., 2000, The Douro estuary (Portugal): a mesotidal salt wedge. Oceanol. Acta 23, 585-594. CrossRefGoogle Scholar
Volpedo, A.V., Cirelli, A.F., 2006, Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Sci. Mar. 70, 325-334. CrossRefGoogle Scholar