Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:58:56.972Z Has data issue: false hasContentIssue false

Lead accumulation in extracellular granules detected in the kidney of the bivalve Dosinia exoleta

Published online by Cambridge University Press:  19 December 2012

Susana Darriba*
Affiliation:
Technological Institute for the Monitoring of the Marine Environment of Galicia (INTECMAR), Consellería do Medio Rural e do Mar., Vilagarcía de Arousa, Galicia, Spain
Paula Sánchez-Marín*
Affiliation:
Laboratorio de Ecoloxía Mariña (LEM), Universidade de Vigo, Vigo, Galicia, Spain Institut national de la recherche scientifique, Centre Eau, Terre et Environnement, Québec, Canada
*
a Corresponding author: sdarriba@intecmar.org
b Corresponding author: paula.sanchez-marin@ete.inrs.ca
Get access

Abstract

Populations of the marine molluscan bivalve Dosinia exoleta in Galicia (northwest Spain) present lead (Pb) concentrations above the limit for human consumption. Accordingly, its collection for human consumption was forbidden since 2008. The high bioaccumulation of Pb in this species is surprising given that Pb concentrations are not very high in its environment and that other bivalve infaunal species inhabiting the same areas do not show such high Pb contents. This study reports the discovery and description of extracellular granules present in the kidney tubule lumina of this species. Large granules (20−200 μm) mainly composed of calcium phosphate represent between 50% and 75% of the dry weight of the kidneys. Metal analysis revealed that from 78 to 98% of the Pb body burden was present in the kidney, and from 87% to 92% of this Pb within the kidney was contained in metal rich granules. Most of the zinc in these bivalves was also found to be associated with these kidney granules, while other metals, such as copper and cadmium, were associated with other kidney fractions. This study confirms that the high Pb concentrations observed in D. exoleta, and the relationship of Pb concentration with individual size, are due to the inclusion of Pb in kidney granules that accumulate in the kidney lumen over the course of the bivalve’s life.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Anonymous, 2006, Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364, 524.
Anonymous, 2012, Xunta de Galicia, Consellería do Mar. Retrieved 5 June 2012, from http://www.pescadegalicia.com/default.htm.
Beiras, R., Bellas, J., Fernández, N., Lorenzo, J.I., Cobelo-García, A., 2003a, Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus lividus and Ciona intestinalis. Mar. Environ. Res. 56, 531553. CrossRefGoogle ScholarPubMed
Beiras, R., Fernández, N., Bellas, J., Besada, V., González-Quijano, A., Nunes, T., 2003b, Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52, 12091224. CrossRefGoogle ScholarPubMed
Beiras R., Fernández N., Pombar L., 2003c, Metal accumulation in wild intertidal mussels from the Galician rías. In : Villalba A., Reguera B., Romalde J.L., Beiras R. (Eds.) Proc. 4th International Conference on Molluscan Shellfish Safety. Santiago de Compostela, 2002. Consellería de Pesca e Asuntos Marítimos, Xunta de Galicia. IOC-Unesco, pp. 521–532.
Besada, V., Fumega, J., Vaamonde, A., 2002, Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991–1999. Sci. Tot. Environ. 288, 239253. CrossRefGoogle ScholarPubMed
Besada V., González-Quijano A., 2003, Levels of heavy metals and organochloninre compounds in cockles (Cerastoderma edule) in the Ría de Vigo. In : Villalba A., Reguera B., Romalde J.L., Beiras R. (Eds.) Proc. 4th International Conference on Molluscan Shellfish Safety, Santiago de Compostela, 2002. Consellería de Pesca e Asuntos Marítimos, Xunta de Galicia. IOC-Unesco, pp. 545–553.
Besada, V., Manuel Andrade, J., Schultze, F., José González, J., 2011, Monitoring of heavy metals in wild mussels (Mytilus galloprovincialis) from the Spanish North-Atlantic coast. Cont. Shelf Res. 31, 457465. CrossRefGoogle Scholar
Blanco, S.L., González, J.C., Vieites, J.M., 2008, Mercury, cadmium and lead levels in samples of the main traded fish and shellfish species in Galicia, Spain. Food Addit. Contam. B 1, 1521. CrossRefGoogle ScholarPubMed
Brown, B.E., 1982, The form and function of metal-containing “granules” in invertebrate tissues. Biol. Rev. 57, 621667. CrossRefGoogle Scholar
Darriba S., Iglesias D., Rodríguez L., 2009, Estudio histológico de seguimiento del reloj (Dosinia exoleta) (Mollusca, Bivalvia) en la Ría de Arousa : Resultados preliminares. In : Troncoso J.S., Alejo I., López J. (Eds.) Proc. ISMS09. II International symposium in Marine Sciences. Universidade de Vigo, pp. 80–81.
Doyle, L.J., Blake, N.J., Woo, C.C., Yevich, P., 1978, Recent biogenic phosphorite : concretions in mollusk kidneys. Science 199, 14311433. CrossRefGoogle ScholarPubMed
Ghiretti, F., Salvato, B., Carlucci, S., De Pieri, R., 1972, Manganese in Pinna nobilis. Experientia 28, 232233. CrossRefGoogle ScholarPubMed
Gold, K., Capriulo, G., Keeling, K., 1982, Variability in the calcium-phosphate concretion load in the kidney of Mercenaria mercenaria. Mar. Ecol. Prog. Ser. 10, 9799. CrossRefGoogle Scholar
Hopkin S.P., 1989, Ecophysiology of metals in terrestrial invertebrates. Essex, Elsevier.
Ishii, T., Ikuta, K., Otake, T., Hara, M., Ishikawa, M., Koyanagi, T., 1986, High accumulation of elements in the kidney of the marine bivalve, Cyclosunetta menstrualis. Bull. Jpn. Soc. Sci. Fish. 52, 147154. CrossRefGoogle Scholar
Luoma S.N., Rainbow P.S., 2008, Metal Contamination in Aquatic Environments : Science and Lateral Management. New York, Cambridge University Press.
Marigómez, I., Soto, M., Cajaraville, M.P., Angulo, E., Giamberini, L., 2002, Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Techn. 56, 358392. CrossRefGoogle ScholarPubMed
Mason A.Z., Jenkins K.D., 1995, Metal detoxification in aquatic organisms. In : Tessier A., Turner D.R. (Eds.) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, pp. 479–607.
Mauri, M., Orlando, E., 1982, Experimental study on renal concretions in the wedge shell Donax trunculus L. J. Exp. Mar. Biol. Ecol. 63, 4757. CrossRefGoogle Scholar
Prego, R., Cobelo-García, A., 2003, Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ. Pollut. 121, 425452. CrossRefGoogle Scholar
Regoli, F., Nigro, M., Orlando, E., 1992, Effects of copper and cadmium on the presence of renal concretions in the bivalve Donacilla cornea. Comp. Biochem. Physiol. C 102, 189192. CrossRefGoogle Scholar
Reid, R.G.B., Brand, D.G., 1989, Giant kidneys and metal-sequestering nephroliths in the bivalve Pinna bicolor, with comparative notes on Atrina vexillum (Pinnidae). J. Exp. Mar. Biol. Ecol. 126, 95117. CrossRefGoogle Scholar
Saavedra, Y., González, A., Fernández, P., Blanco, J., 2004, Interspecific variation of metal concentrations in three bivalve mollusks from Galicia. Arch. Environ. Contam. Toxicol. 47, 341351. CrossRefGoogle ScholarPubMed
Sánchez-Marín, P., Beiras, R., 2008, Lead concentrations and size dependence of lead accumulation in the clam Dosinia exoleta from shellfish extraction areas in the Galician Rías (NW Spain). Aquat. Living Resour. 21, 5761. CrossRefGoogle Scholar
Shaw, B.L., Battle, H.I., 1957, The gross and microscopic anatomy of the digestive tract of the oyster Crassostrea virginica (Gmelin). Can. J. Zool. 35, 325347. CrossRefGoogle Scholar
Simkiss, K., 1977, Biomineralization and detoxification. Calcified Tissue Int. 24, 199200. CrossRefGoogle ScholarPubMed
Sullivan, P.A., Robinson, W.E., Morse, M.P., 1988a, Isolation and characterization of granules from the kidney of the bivalve Mercenaria mercenaria. Mar. Biol. 99, 359368. CrossRefGoogle Scholar
Sullivan, P.A., Robinson, W.E., Morse, M.P., 1988b, Subcellular distribution of metals within the kidney of the bivalve Mercenaria mercenaria (L.). Comp. Biochem. Physiol. C 91, 589595. CrossRefGoogle Scholar
Tiffany, W.J., Luer, W.H., Watkins, M.A., 1980, Intracellular and intraluminal aspects of renal calculosis in the marine mollusc Macrocallista nimbosa. Invest. Urol. 18, 139143. Google ScholarPubMed
Walkley, A., 1947, A critical examination of a rapid method for determining organic carbon in soils : Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251264. CrossRefGoogle Scholar
Wallace, W.G., Lee, B.G., Luoma, S.N., 2003, Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar. Ecol. Prog. Ser. 249, 183197. CrossRefGoogle Scholar
Wang, W.X., Rainbow, P.S., 2008, Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp. Biochem. Physiol. C 148, 315323. Google ScholarPubMed