Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:31:16.270Z Has data issue: false hasContentIssue false

Link between exposure of fish (Solea solea) to PAHsand metabolites: Application to the “Erika” oil spill

Published online by Cambridge University Press:  15 October 2004

Hélène Budzinski
Affiliation:
Laboratoire de Physico- et Toxico-Chimie des Systèmes Naturels, UMR 5472 CNRS, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
Olivier Mazéas
Affiliation:
Laboratoire de Physico- et Toxico-Chimie des Systèmes Naturels, UMR 5472 CNRS, Université Bordeaux 1, 351 cours de la Libération, 33405 Talence, France IFREMER, DEL/PC, Centre de Nantes, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
Jacek Tronczynski
Affiliation:
IFREMER, DEL/PC, Centre de Nantes, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
Yves Désaunay
Affiliation:
IFREMER, Laboratoire d'Ecologie Halieutique, Centre de Nantes, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
Gilles Bocquené
Affiliation:
IFREMER, DEL/PC, Centre de Nantes, rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
Guy Claireaux
Affiliation:
CREMA, Place du Séminaire, BP 5, 17137 L'Houmeau, France
Get access

Abstract

An analytical method consisting in enzymatic deconjugation, solid phase extraction and purification, and gas chromatography/mass spectrometry analysis after derivatization was used in this study to quantify Polycyclic Aromatic Hydrocarbon (PAH) metabolites in the bile of fish. The method has been applied in a laboratory experiment studying the fate of pyrene in basin containing soles. This study has allowed the identification of 1-hydroxypyrene as the single metabolite in bile after enzymatic deconjugation. In a second time, 1-hydroxypyrene has been used as a biomarker of exposure in the case of the “Erika” oil spill. This biomonitoring was successful in demonstrating the exposure of juvenile soles to PAHs present in the “Erika” fuel oil.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, E., Beyer, J., Goksøyr, A., 2000, Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity, inner filter effect and signa interpretation. Biomarkers 5, 9-23. CrossRef
Ariese, F., Kok, S.J., Verkaik, M., Gooijer, C., Velthorst, N.H., Hofstraat, J.W., 1993, Synchronous fluorescence spectrometry of fish bile: A rapid screening method for the biomonitoring of PAH exposure. Aquat. Toxicol. 26, 273-286. CrossRef
Baumann P.C., 1989, PAH, metabolites, and neoplasia in feral fish populations. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 269-290.
Beyer, J., Sandvik, M., Hylland, K., Fjeld, E., Egaas, E., Aas, E., Skåre, J.U., Goksøyr, A., 1996, Contaminant accumulation and biomarker responses in flounder (Platichthys flesus L.) and Atlantic cod (Gadus morhua L.) exposed by caging to polluted sediments in Sørfjorden, Norway. Aquat. Toxicol. 36, 75-98. CrossRef
Boehm, P.D., Page, D.S., Burns, W.A., Bence, A.E., Mankiewicz, P.J., Brown, J.S., 2001, Resolving the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska. Environ. Sci. Technol. 35, 471-479. CrossRef
Budzinski, H., Letellier, M., Garrigues, P., Le Menach, K., 1999, Optimisation of the microwave-assisted extraction in open cell of PAHs from soils and sediments – Study of moisture effect. J. Chromatogr. A. 837, 187-200. CrossRef
De Flora, S., Bagnasco, M., Zanacchi, P., 1991, Genotoxic, carcinogenic and teratogenic hazards in the marine environment, with special reference to the Mediterranean Sea. Mutation Res. 258, 285320. CrossRef
Huggett, R.J., Stegeman, J.J., Page, D.S., Parker, K.R., Woodin, B., Brown, J.S., 2003, Biomarkers in Fish from Prince William Sound and the Gulf of Alaska: 1999-2000. Environ. Sci. Technol. 37, 4043-4051. CrossRef
Jewett, J.C., Dean, T.A., Woodin, B.R., Hoberg, M.K., Stegeman, J.J., 2002, Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Mar. Environ. Res. 54, 21-48. CrossRef
Krahn, M.M., Myers, M., Burrows, D.G., Malins, D.C., 1984, Determination of metabolites of xenobiotics in bile of fish from polluted waterways. Xenobiotica 14, 633-646. CrossRef
Krahn, M.M., Rhodes, L.D., Myers, M.S., Moore, L.K., MacLeod, W.D., Malins, D.C., 1986a, Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys vetulus) from Puget Sound, Washington. Arch. Environ. Contam. Toxicol. 15, 61-67. CrossRef
Krahn, M.M., Kittle, L.J., McLeod, W.D., 1986b, Evidence for exposure of fish to oil spilled into the Columbia River. Mar. Environ. Res. 20, 291-298. CrossRef
Krahn, M.M., Burrows, D.G., MacLeod, W.D., Malins, D.C., 1987, Determination of individual metabolites of aromatic compounds in hydrolysed bile of English sole (Parophrys vetulus) from Puget Sound, Washington. Arch. Environ. Contam. Toxicol. 16, 511-522. CrossRef
Krahn, M.M., Burrows, D.G., Ylitalo, G.M., Brown, D.W., Wigren, C.A., Collier, T.K., Chan, S.-L., Varanasi, U., 1992, Mass spectrometric analysis for aromatic compounds in bile of fish sampled after the Exxon Valdez oil spill. Environ. Sci. Technol. 26, 116-126. CrossRef
Krahn, M.M., Ylitalo, G.M., Buzitis, J., Bolton, J.L., Wigren, C.A., Chan, S.-L., Varanasi, U., 1993, Analyses for petroleum-related contaminants in marine fish and sediments following the Gulf oil spill. Mar. Pollut. Bull. 27, 285-292. CrossRef
Lin, E.L.C., Cormier, S.M., Torsella, J.A., 1996, Fish biliary polycyclic aromatic hydrocarbon metabolites estimated by fixed-wavelength fluorescence: comparison with HPLC-fluorescent detection. Ecotoxicol. Environ. Saf. 35, 16-23. CrossRef
Luthe, G., Stroomberg, G.J., Ariese, F., Brinkman, U.A.T., van Straalen, N.M., 2002, Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods. Environ. Toxicol. Pharmacol. 12, 221-229. CrossRef
Marty, G.D., Hoffmann, A., Okihiro, M.S., Hepler, K., Hanes, D., 2003, Retrospective analysis: bile hydrocarbons and histopathology of demersal rockfish in Prince William Sound, Alaska, after the Exxon Valdez oil spill. Mar. Environ. Res. 56, 569-584. CrossRef
McDonald, SJ., Kennicutt, M.C., Brooks, J.M., 1992, Evidence of polycyclic aromatic hydrocarbon (PAH) exposure in fish from the Antarctic peninsula. Mar. Pollut. Bull. 25, 313-317. CrossRef
Meador J.P., 2003, Bioaccumulation of PAHs in marine invertebrates. In: Douben P.E.T. (Ed.), PAHs: An Ecotoxicological Perspective. Wiley, England, pp. 147-172.
Moore M.N., Livingstone D.R., Widdows J., 1989, Hydrocarbons in marine molluscs: Biological effects and ecological consequences. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 185-202.
Neff J.M., 1979, Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates and biological effects. London, Applied Sciences Publishers.
Tissot B.P., Welte D.H., 1978, Petroleum formation and occurrence. A new approach to oil and gas exploration. Springer-Verlag, Berlin Heidelberg.
van der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003, Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57-149. CrossRef
Varanasi U., Stein J.E., Nishimoto M., 1989, Biotransformation and disposition of PAH in fish. In: Varanasi U. (Ed.), Metabolism of PAH in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp. 93-149.