Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T05:58:15.105Z Has data issue: false hasContentIssue false

Use of calcein to estimate and validate age in juveniles of thewinged pearl oyster Pteria sterna

Published online by Cambridge University Press:  15 September 2011

Jorge Iván Cáceres-Puig
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C S. 23096, Mexico
Leonardo Huato-Soberanis*
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C S. 23096, Mexico
Felipe Neri Melo-Barrera
Affiliation:
Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico
Pedro E. Saucedo
Affiliation:
Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C S. 23096, Mexico
*
a Corresponding author:lhuato@cibnor.mx
Get access

Abstract

Determining age is an important step when assessing growth, mortality, and yield ofcultivated and wild populations, but studies linking shell growth marks in the pearloyster Pteria sterna with the age of individuals are lacking. Thirtyjuveniles (20.0 ± 1.2 mm shell height), collected from a winter spatfall, were marked withthe fluorochrome calcein and kept in the field in culture containers. After day 16, thejuveniles were cleaned and their shells cut along the sagittal axis to determineperiodicity of micro growth bands formed in the inner shell layers and to estimate age.During this trial, fluorescent calcein marking succeeded in individuals larger than 20 mmshell height; these formed an average of 15 micro growth bands over the 16 days,representing 1 band per day. The marker created a wide fluorescent band containing threemicro growth marks, suggesting that calcein was incorporated into the shell over the firstthree days. The use of calcein was found to be an accurate method for validating the microgrowth band frequency of formation in P. sterna juveniles, which in turncan help to estimate age.

Type
Research Article
Copyright
© EDP Sciences, IFREMER, IRD 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anwar, N.A., Richardson, C.A., Seed, R., 1990, Age determination, growth rate and population structure of the horse mussel Modiolus modiolus. J. Mar. Biol. Assoc. UK 70, 441457. CrossRefGoogle Scholar
Araya-Núñez, O., Ganning, B., Bückle-Ramírez, F., 1991, Gonad maturity, induction of spawning, larval breeding and growth in the American pearl-oyster (Pteria sterna Gould). Calif. Fish Game 77, 181193. Google Scholar
Beentjes, M.P., Williams, B.G., 1985, Endogenous circatidal rhythmicity in the New Zealand cockle Chione stutchburyi (Bivalvia, Veneridae). Mar. Behav. Physiol. 12, 171180. CrossRefGoogle Scholar
Britton G., 1990, The Biochemistry of Natural Pigments. Cambridge University Press, Cambridge.
Bückle-Ramírez, L.F., Voltolina-Lobina, D., Morales-Guerrero, E., Valenzuela-Buriel, F., 1992. Spat settlement and growth of Pteria sterna (Gould) (Mollusca, Bivalvia) in Bahía de Los Ángeles, Baja California, Mexico. Trop. Ecol. 33, 137147. Google Scholar
Campana, S.E., 2001, Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197242. CrossRefGoogle Scholar
Chellam, A., 1978, Growth of pearl oyster Pinctada fucata in the pearl culture farm at Veppalodai. Ind. J. Fish. 25, 7783. Google Scholar
Comfort, A., 1949, Acid-soluble pigments of the shells. I. The distribution of porphyrin fluorescence in molluscan shells. Biochem. J. 44, 111117. Google ScholarPubMed
Day, R.W., Williams, M.C., Hawkes, G.P., 1995, A comparison of fluorochromes for marking abalone shells. Mar. Freshw. Res. 46, 599605. CrossRefGoogle Scholar
Del Rio-Portilla, A.D., Re-Araujo, A.D., Voltolina-Lobina, D., 1992, Growth of the pearl oyster Pteria sterna under different thermic and feeding conditions. Mar. Ecol. 89, 221227. CrossRefGoogle Scholar
Evans, J.W., 1972, Tidal growth increments in the cockle Clinocardium nuttalli. Science 176, 416417. CrossRefGoogle ScholarPubMed
Evans J.W., 1975, Growth and micromorphology of two bivalves exhibiting nondaily growth lines. In: Rosenberg Jr. G.D., Runcorn S.K. (Eds.). Growth rhythms and the history of the earth’s rotation. John Wiley & Sons, London, pp. 119–134.
Farrow, G.E., 1972, Periodicity structures in the bivalve shell: experiments to establish growth controls in Cerastoderma edule from the Thames Estuary. Paleontology 14, 571588. Google Scholar
Farrow, G.E., 1975, Periodicity structures in the bivalve shell: analysis of stunting in Cerastoderma edule from the Burry Inlet (South Wales). Paleontology 15, 6172. Google Scholar
Gaytán-Mondragon, I., Cáceres-Martínez, C., Tobías-Sánchez, M., 1993, Growth of the pearl oysters Pinctada mazatlanica and Pteria sterna in different culture structures at La Paz Bay, Baja California Sur, Mexico. J. World Aquac. Soc. 24, 541546. CrossRefGoogle Scholar
Gervis M.H., Sims N.S., 1992, Biology and culture of pearl oysters (Bivalvia: Pteriidae). Overseas Development Administration of the United Kingdom. International Center for Living Aquatic Resources Management. Manila, Philippines.
Goodwin, D.H., Flessa, K.W., Schöne, B.R, Dettman, D.L., 2001, Cross-calibration of daily growth increments, stable isotope variation and temperature of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios 16, 387398. 2.0.CO;2>CrossRefGoogle Scholar
Guenther, J., De Nys, R., 2006, Differential community development of fouling species on the pearl oysters Pinctada fucata, Pteria penguin and Pteria chinensis (Bivalvia, Pteriidae). Biofouling 22, 163171. CrossRefGoogle Scholar
Guilbault G.G., 1973, Practical Fluorescence, 2nd edition, Marcel Dekker, New York.
Heilmayer, O., Honnen, C., Jacob, U., Chiantore, M., Cattaneo-Vietti, R., Brey, T., 2005, Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki. Polar Biol. 28, 523527. CrossRefGoogle Scholar
Herrmann, M., Lepore, M.L., Laudien, J., Arntz, W.E., Penshaszadeh, P.E., 2009, Growth estimations of the Argentinean wedge clam Donax hanleyanus: A comparison between length-frequency distribution and size-increment analysis. J. Exp. Mar. Biol. Ecol. 379, 815. CrossRefGoogle Scholar
House, M.R., Farrow, G.E., 1968, Daily growth banding in the shell of the cockle Cardium edule. Nature 219, 13841386. CrossRefGoogle ScholarPubMed
Hynd, J.S., 1960, An analysis of variation in Australian specimens of Pinctada albina (Lamarck) (Lamellibranchia). Aust. J. Mar. Freshw. Res. 11, 326364. CrossRefGoogle Scholar
Kaehler, S., McQuaid, C.D., 1999, Use of the fluorocrome calcein as an insitu growth marker in the brown mussel Perna perna. Mar. Biol. 133, 455460. CrossRefGoogle Scholar
Kiefert, L., McLaurin-Moreno, D., Arizmendi-Castillo, E., Hänni, H.A., Elen, S., 2004, Cultured pearls from the Gulf of California, Mexico. Gems & Gemology 40, 2638. CrossRefGoogle Scholar
Lartaud, F., Chauvaud, L., Richard, J., Toulot, A., Bollinger, C., Testut, L., Paulet, Y.M., 2010, Experimental growth pattern calibration of Antarctic scallop shells (Adamussium colbecki Smith, 1902) to provide a biogenic archive of high-resolution records of environmental and climatic changes. J. Exp. Mar. Biol. Ecol. 393, 158-167. CrossRefGoogle Scholar
Lee, A.M., Williams, A., Southgate, P.C., 2008, Modelling and comparison of growth of the silverlip pearl oyster Pinctada maxima (Jameson) Mollusca: Pteriidae cultured in west Papua, Indonesia. Mar. Freshw. Res. 59, 2231. CrossRefGoogle Scholar
Linard, C., Gueguen, Y., Moriceau, J., Soyez, C., Hui, B., Raoux, A., Cuif, J.P., Cochard, J.C., Le Pennec, M., LeMoullac, G., 2011, Calcein staining of calcified structures in pearl oyster Pinctada margaritifera and the effect of food resource level on shell growth. Aquaculture 313, 149-155. CrossRefGoogle Scholar
Lonne, O.J., Gray, J.S., 1988, Influence of tides on microgrowth bands in Cerastoderma edule from Norway. Mar. Ecol. Prog. Ser. 42, 17. CrossRefGoogle Scholar
Mahe, K., Bellamy, E., Lartaud, F., de Rafelis, M., 2010, Calcein and manganese experiments for marking the shell of the common cockle (Cerastoderma edule): tidal rhythm validation of increments formation. Aquat. Living Resour. 23, 239-245. CrossRefGoogle Scholar
Monteforte, M., García-Gasca, A., 1994, Spat collection studies on pearl oysters Pinctada mazatlanica and Pteria sterna (Bivalvia: Pteriidae) in Bahia de La Paz, South Baja California, México. Hydrobiologia 291, 21-34. CrossRefGoogle Scholar
Monteforte, M., Kappelman-Piña, E., López-Espinosa, B., 1995, Spatfall of pearl oysters Pinctada mazatlanica and Pteria sterna (Bivalvia:Pteriidae) in Bahia de La Paz, South Baja California, México. Aquac. Res. 26, 497-511 CrossRefGoogle Scholar
Moran, A.L., 2000, Calcein as a marker in experimental studies newly-hatched gastropods. Mar. Biol. 137, 893898. CrossRefGoogle Scholar
Palmer J.D., 1995, The biological rhythms and clocks of intertidal animals. Oxford University Press, New York.
Pandya, J.A., 1976, Influence of the temperature on growth ring formation in the pearl oyster, Pinctada fucata (Gould), of the Gulf of Kutch. Indian J. Mar. Sci. 2, 249251. Google Scholar
Pannella, G., MacClintock, C., 1968, Biological and environmental rhythms reflected in molluscan shell growth. J. Paleont. 42, 6480. Google Scholar
Pouvreau, S., Bacher, C., Héral, M., 2000, Ecophysiological model of growth and reproduction of the black pearl oyster, Pinctada margaritifera, in the planktonic food web of Takapoto lagoon (French Polynesia). Aquaculture 186, 117144. CrossRefGoogle Scholar
Rhoads, D.C., Pannella, G., 1970, The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia 3, 143161. CrossRefGoogle Scholar
Riascos, J.M., Guzman, N., Laudien, J, Heilmayer, O., Oliva, M., 2007, Suitability of three stains to mark shells of Concholepas concholepas (Gastropoda) and Mesodesma donacium (Bivalvia). J. Shellfish Res. 26, 4349. CrossRefGoogle Scholar
Richardson, C.A., Crisp, D.J., Runham, N.W., 1979, Tidally deposited growth bands in shell of the common cockle, Cerastoderma edule (L.) Malacologia 18, 277290. Google Scholar
Richardson, C.A., 1988, Tidally produced growth bands in the subtidal bivalve Spisula subtruncata (Da Costa). J. Moll. Stud. 54, 7182. CrossRefGoogle Scholar
Richardson, C.A., 1989, An analysis of the microgrowth bands in the shell of the common mussel Mytilus edulis. J. Mar. Biol. Assoc. UK 69, 477491. CrossRefGoogle Scholar
Rodland, D.L., Schöne, B.R., Helama, S, Nielsen, J.K., Baier, S., 2006, A clockwork mollusk: Ultradian rhythms in bivalve activity revealed by digital photography. J. Exp. Mar. Biol. Ecol. 334, 316323. CrossRefGoogle Scholar
Rowley, R.J., Mackinnon, D.L., 1995, Use of the fluorescent marker calcein in biomineralisation studies of brachiopods and other marine organisms. Bull. Inst. Océanogr. Monaco. Spec. Issue 14, 111120. Google Scholar
Saucedo, P.E., Monteforte, M., 1997a, In situ growth of pearl oysters Pinctada mazatlanica (Hanley 1856) and Pteria sterna (Gould 1851) under repopulation conditions at Bahía de La Paz, Baja California Sur, Mexico. Aquac. Res. 28, 367378. CrossRefGoogle Scholar
Saucedo, P., Monteforte, M., 1997b, Breeding cycle of pearl oysters Pinctada mazatlanica and Pteria sterna (Bivalvia: Pteriidae) at Bahía de La Paz, Baja California Sur, Mexico. J. Shellfish Res. 16, 103110. Google Scholar
Saucedo, P., Monteforte, M., Blanc, F., 1998, Changes in shell dimensions of pearl oysters Pinctada mazatlanica (Hanley 1856) and Pteria sterna (Gould 1851) during growth as criteria for Mabé pearl implants. Aquac. Res. 29, 801814. CrossRefGoogle Scholar
Schöne, B.R., Goodwin, D.H., Flessa, K.W., Dettman, D.L, Roopnarine, P.D., 2002, Sclerochronology and growth of the bivalve mollusks Chione (Chionista) fluctifraga and Chione (Chionista) cortezi in the northern Gulf of California, Mexico. Veliger 45, 4554. Google Scholar
Seed, R., Brown, R.A., 1978, Growth as a strategy for survival in two marine bivalves, Cerastoderma edule and Modiolus modiolus. J. Anim. Ecol. 47, 183197. CrossRefGoogle Scholar
Shafee, M.S., 1992, Production estimate of a mussel population Perna picta (Born) on the Atlantic coast of Morocco. J. Exp. Mar. Biol. Ecol. 163, 183197. CrossRefGoogle Scholar
Sims, N.A., 1993, Size, age and growth of the Black-lip pearl oyster, Pinctada margaritifera (L.) (Bivalvia: Pteriidae). J. Shellfish Res. 12, 223228. Google Scholar
Southgate, P.C., Beer, A.C., 2000, Growth of blacklip pearl oyster (Pinctada margaritifera L.) juveniles using different nursery culture techniques. Aquaculture 187, 97104. CrossRefGoogle Scholar
Taylor, J.J., Southgate, P.C., Rose, R.A., 1997, Fouling animals and their effect on the growth of silver-lip pearl oysters, Pinctada maxima (Jameson) in suspended culture. Aquaculture 153, 3140. CrossRefGoogle Scholar
Velayudhan, T.S., Chellam, A., Dharmaraj, S., Victor, A.C.C., Kasim, H.M., 1996, Comparison of growth and shell attributes of four generations of the pearl oyster Pinctada fucata (Gould) produced in the hatchery. Ind. J. Fish. 43, 6977. Google Scholar
Whyte M.A., 1975, Time, tide and the cockle. In: Rosenberg, G.D., Runcorn, S.K. (Eds.) Growth rhythms and the history of the earth’s rotation. John Wiley & Sons, London, pp. 177–189.