Published online by Cambridge University Press: 09 August 2013
The cost of adverse selection in the life and critical illness (CI) insurance markets, brought about by restrictions on insurers' use of genetic test information, has been studied for a variety of rare single-gene disorders. Only now do we have a study of a common disorder (breast cancer) that accounts for the risk associated with multiple genes. Such a collection of genes is called a polygene. We take two approaches to modelling the severity of adverse selection which may result from insurers being unable to take account of tests for polygenes as well as major genes. First, we look at several genetic testing scenarios, with a corresponding range of possible insurance-buying behaviours, in a market model for CI insurance. Because a relatively large proportion of the population is exposed to adverse polygenic risk, the costs of adverse selection are potentially much greater than have been associated with rare single genes. Second, we use utility models to map out when adverse selection will appear, and which risk groups will cause it. Levels of risk aversion consistent with some empirical studies do not lead to significant adverse selection in our model, but lower levels of risk aversion could effectively eliminate the market.