Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T14:22:39.722Z Has data issue: false hasContentIssue false

Proportional Hazard Estimation Adjusted by Continuous Credibility

Published online by Cambridge University Press:  17 April 2015

Jens Perch Nielsen
Affiliation:
Royal&Sun Alliance, Codan, Gammel Kongevej 60, 1790 København V, Denmark, E-mail: npj@codan.dk and san@codan.dk
Bjørn Lunding Sandqvist
Affiliation:
Royal&Sun Alliance, Codan, Gammel Kongevej 60, 1790 København V, Denmark, E-mail: npj@codan.dk and san@codan.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper extends the continuous credibility weighting introduced to hazard estimation in Hardy and Panjer (1998) and Nielsen and Sandqvist (2000) to the more general case, where the common basis is a proportional hazard model.

Type
Workshop
Copyright
Copyright © ASTIN Bulletin 2005

References

Aalen, O.O. (1994) Effects of frailty in survival analyses. Statistical Methods in Medical Research, 3, 227243.CrossRefGoogle Scholar
Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. (1992) Statistical models based on counting processes. Springer-Verlag, New-York.Google Scholar
Bickel, P.J., Klaassen, C.A.J., Ritov, Y. and Wellner, J.A. (1993) Efficient and adaptive estimation for semiparametric models. The John Hopkins University Press, Baltimore and London.Google Scholar
Bühlmann, H. and Straub, E. (1970) Glaubwürdigkeit für Schadensätze. Bulletin of the Association of Swiss Actuaries, 70, 111133.Google Scholar
Hardy, M.R. and Panjer, H.H. (1998) A credibillity approach to mortality risk. Astin Bulletin, 28, 269283.CrossRefGoogle Scholar
Hastie, T.J. and Tibshirani, R.J. (1990) Generalized Additive Models. Chapman and Hall.Google Scholar
Hjort, N.L. (1992) Semiparametric estimation of parametric hazard rates. In Klein, J.P and Goel, P.K., editors, Survival Analysis: State of the Art. pp. 211236. Kluwer, Dordrecht.CrossRefGoogle Scholar
Hougaard, P. (2000) Analysis of multivariate survival data. Springer-Verlag, New-York.CrossRefGoogle Scholar
Jones, M.C., Linton, O.B. and Nielsen, J.P. (1995) A simple bias reduction method for density estimation. Biometrika, 82, 32738.CrossRefGoogle Scholar
Mammen, E., Linton, O.B. and Nielsen, J.P. (1999) The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Annals of Statistics, 27, 14431490.CrossRefGoogle Scholar
Nielsen, J.P. (1998) Multiplicative bias correction in kernel hazard estimation. Scand. J. Statist., 11, 453466.Google Scholar
Nielsen, J.P., Linton, O.B. and Bickel, P. (1998). On a semiparametric survival model with flexible covariate effect. Ann. Statist., 26, 215241.CrossRefGoogle Scholar
Nielsen, J.P. and Sandqvist, B. (2000) Credibility weighted hazard estimation. Astin Bulletin, 30, 405417.CrossRefGoogle Scholar
Nielsen, J.P. and Sandqvist, B. (2005) Correction note to “Credibility weighted hazard estimation. Astin Bulletin, 30(2), 405-417”. Astin Bulletin 35(1), 259.Google Scholar
Nielsen, J.P. and Tangaard, C. (2001) Boundary and bias correction in kernel hazard estimation. Scand. J. Statist., 28.CrossRefGoogle Scholar
Norberg, R (2004) Credibility theory. In: Encyclopedia of Actuarial Science, Wiley.Google Scholar
Ramlau-Hansen, H. (1983) Smoothing counting process intensities by means of kernel functions. Ann. Statist., 11, 453466.CrossRefGoogle Scholar
Woodbury, M.A. and Manton, K.G. (1977) A randon walk model of human mortality and aging. Theor. Population Biol., 11, 3748.CrossRefGoogle Scholar