Published online by Cambridge University Press: 24 March 2015
Pricing approaches for long-tail quota shares are often based on the chain ladder method. Apart from IBNR calculation, common pricing methods require volume measures for accident years in the observation period, and for the quotation period. In practice, in most cases restated premiums are used as the volume measures. The prediction error of the chain ladder method is an important part of the prediction uncertainty of these pricing approaches. There are, however, two sources of uncertainty that are not addressed by the chain ladder model: the stochastic volatility of the claims in the first development year; and the restatement uncertainty, the risk that the restated premium is not a good volume measure. We extend Mack's chain ladder model to cover these two sources of uncertainty, and calculate the mean-squared error of chain ladder pricing approaches with arbitrary weights for the accident years in the observation period. Then we focus on the problem of finding optimal weights for the accident years. First, we assume that the parameters for restatement uncertainty are given, and provide recursion formulas to calculate approximately-optimal weights. Second, we describe a maximum likelihood approach that can be used to estimate the restatement uncertainty.