Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T10:58:17.419Z Has data issue: false hasContentIssue false

Testing for Concordance Ordering

Published online by Cambridge University Press:  17 April 2015

Ana C. Cebrián
Affiliation:
Dpto. Métodos Estadisticos. Ed. Matematicas, Facultad de Ciencias, Universidad de Zaragoza, CP. Cerbuna, 12 S-Zaragoza 50009, Spain, E-mail: acebrian@unizar.es
Michel Denuit
Affiliation:
Institut de Statistique, Université Catholique de Louvain, Voie du Roman Pays, 20 B-1348 Louvain-la-Neuve, Belgium, E-mail: denuit@stat.ucl.ac.be
Olivier Scaillet
Affiliation:
HEC Genéve and FAME, Université de Genéve, Bd Carl Vogt, 102 CH-1211 Genéve 4, Suisse, E-mail: olivier.scaillet@hec.unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose inference tools to analyse the concordance (or correlation) order of random vectors. The analysis in the bivariate case relies on tests for upper and lower quadrant dominance of the true distribution by a parametric or semiparametric model, i.e. for a parametric or semiparametric model to give a probability that two variables are simultaneously small or large at least as great as it would be were they left unspecified. Tests for its generalisation in higher dimensions, namely joint lower and upper orthant dominance, are also analysed. The parametric and semiparametric settings are based on the copula representation for multivariate distribution, which allows for disentangling behaviour of margins and dependence structure. A distance test and an intersection-union test for inequality constraints are developed depending on the definition of null and alternative hypotheses. An empirical illustration is given for US insurance claim data.

Type
Workshop
Copyright
Copyright © ASTIN Bulletin 2004

References

Andrews, D. (1994) “Empirical Process Methods in Econometrics”, in Handbook of Econometrics, Vol. IV, eds Engle, R. and McFadden, D., 22472294.CrossRefGoogle Scholar
Andrews, D. (1999) “Estimation when a Parameter is on a Boundary”, Econometrica, 67, 13411384.CrossRefGoogle Scholar
Bartholomew, D. (1959a) “A Test of Homogeneity for Ordered Alternatives, I”, Biometrika, 46, 3648.CrossRefGoogle Scholar
Bartholomew, D. (1959b) “A Test of Homogeneity for Ordered Alternatives, II”, Biometrika, 46, 328335.CrossRefGoogle Scholar
Cambanis, S., Simons, G. and Stout, W. (1976) “Inequalities for Ek(X,Y) when the Marginals are Fixed”, Wahrsch, Z. Verw. Gebiete, 36, 285294.CrossRefGoogle Scholar
Cebrian, A., Denuit, M. and Scaillet, O. (2002) “Testing for Concordance Ordering”, FAME DP 41.Google Scholar
Dardanoni, V. and Forcina, A. (1999) “Inference for Lorenz Curve Orderings”, Econometrics Journal, 2, 4874.CrossRefGoogle Scholar
Davidson, R. and Duclos, J.-Y. (2000) “Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality”, Econometrica, 68, 14351464.CrossRefGoogle Scholar
Denuit, M. and Scaillet, O. (2002) “Nonparametric Tests for Positive Quadrant Dependence”, FAME DP 44.Google Scholar
Dhaene, J. and Goovaerts, M. (1996) “Dependency of Risks and Stop-Loss Order”, ASTIN Bulletin, 26, 201212.CrossRefGoogle Scholar
Embrechts, P., Mcneil, A. and Straumann, D. (2000) “Correlation and Dependency in Risk Management: Properties and Pitfalls”, in Risk Management: Value at Risk and Beyond, eds Dempster, M. and Moffatt, H., Cambridge University Press, Cambridge.Google Scholar
Frees, E. and Valdez, E. (1998) “Understanding Relationships Using Copulae”, North American Actuarial Journal, 2, 125.CrossRefGoogle Scholar
Genest, C., Ghoudi, K. and Rivest, L.-P. (1998) “A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions”, Biometrika, 82, 543552.CrossRefGoogle Scholar
Gouriéroux, C., Holly, A. and Monfort, A. (1982) “Likelihood Ratio, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters”, Econometrica, 50, 6380.CrossRefGoogle Scholar
Gouriéroux, C., Monfort, A. and Trognon, A. (1984) “Pseudo Maximum Likelihood Theory”, Econometrica, 52, 681700.CrossRefGoogle Scholar
Howes, S. (1993) “Inferring Population Rankings from Sample Data”, STICERD discussion paper. Google Scholar
Joe, H. (1990) “Multivariate concordance”. Journal of Multivariate Analysis, 35, 1230.CrossRefGoogle Scholar
Joe, H. (1997) Multivariate Models and Dependence Concepts, Chapman & Hall, London.Google Scholar
Kaur, A., Prakasa Rao, B. and Singh, H. (1994) “Testing for Second-Order Dominance of Two Distributions”, Econometric Theory, 10, 849866.CrossRefGoogle Scholar
Klugman, S. and Parsa, R. (1999) “Fitting Bivariate Loss Distributions with Copulas”, Insurance Mathematics and Economics, 24, 139148.CrossRefGoogle Scholar
Kodde, D. and Palm, F. (1986) “Wald Criteria for Jointly Testing Equality and Inequality Restrictions”, Econometrica, 54, 12431248.CrossRefGoogle Scholar
Kudo, A. (1963) “A Multivariate Analogue for the One-Sided Test”, Biometrika, 50, 403418.CrossRefGoogle Scholar
Nelsen, R. (1999) An Introduction to Copulas, Lecture Notes in Statistics, Springer-Verlag, New-York.Google Scholar
Pollard, D. (1985) “New Ways to Prove Central Limit Theorems”, Econometric Theory, 1, 295314.CrossRefGoogle Scholar
Serfling, R. (1980) Approximation Theorems of Mathematical Statistics, Wiley, New-York. CrossRefGoogle Scholar
Shih, J., and Louis, T. (1995) “Inferences on the Association Parameter in Copula Models for Bivariate Survival Data”, Biometrics, 51, 13841399.CrossRefGoogle ScholarPubMed
Scott, D. (1992) “Multivariate Density Estimation: Theory, Practice and Visualisation”, John Wiley & Sons, New-York. Google Scholar
Sklar, A. (1959) “Fonctions de Répartition à n Dimensions et leurs Marges, Publ. Inst. Stat. Univ. Paris, 8, 229231.Google Scholar
Tchen, A. (1980) “Inequalities for Distributions with Given Marginals”, The Annals of Probability, 8, 814827.CrossRefGoogle Scholar
White, H. (1982) “Maximum Likelihood Estimation of Misspecified Models”, Econometrica, 50, 126.CrossRefGoogle Scholar
Wolak, F. (1989a) “Testing Inequality Constraints in Linear Econometric Models”, Journal of Econometrics, 41, 205235.CrossRefGoogle Scholar
Wolak, F. (1989b) “Local and Global of Linear and Nonlinear Inequality Constraints in Nonlinear Econometric Models”, Econometric Theory, 5, 135.CrossRefGoogle Scholar
Yanagimoto, Y. and Okamoto, M. (1969) “Partial orderings of permutations and monotonicity of a rank correlation statistic”, Annals of the Institute of Statistical Mathematics, 21, 489506.CrossRefGoogle Scholar