Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T05:38:16.097Z Has data issue: false hasContentIssue false

Computational specificity in the human brain

Published online by Cambridge University Press:  30 June 2016

James M. Shine
Affiliation:
School of Psychology, Stanford University, Stanford, CA 94305. macshine@stanford.eduianeisenberg90@gmail.compoldrack@stanford.eduhttps://poldracklab.stanford.edu/
Ian Eisenberg
Affiliation:
School of Psychology, Stanford University, Stanford, CA 94305. macshine@stanford.eduianeisenberg90@gmail.compoldrack@stanford.eduhttps://poldracklab.stanford.edu/
Russell A. Poldrack
Affiliation:
School of Psychology, Stanford University, Stanford, CA 94305. macshine@stanford.eduianeisenberg90@gmail.compoldrack@stanford.eduhttps://poldracklab.stanford.edu/

Abstract

Although meta-analytic neuroimaging studies demonstrate a relative lack of specificity in the brain, this evidence may be the result of limits inherent to these types of studies. From this perspective, we review recent findings that suggest that brain function is most appropriately categorized according to the computational capacity of each brain system, rather than the specific task states that elicit its activity.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2014) After phrenology: Neural reuse and the interactive brain. MIT Press.CrossRefGoogle Scholar
Anderson, M. L., Kinnison, J. & Pessoa, L. (2013) Describing functional diversity of brain regions and brain networks. NeuroImage 73:5058.Google Scholar
Barbas, H. and Zikopolous, B. (2007) The prefrontal cortex and flexible behavior. The Neuroscientist 13(5):532–45.Google Scholar
Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. (2015) Learning-induced autonomy of sensorimotor systems. Nature Neuroscience 18(5):744–51.Google Scholar
Curtis, C. E. (2006) Prefrontal and parietal contributions to spatial working memory. Neuroscience 139(1):173–80.CrossRefGoogle ScholarPubMed
Dubois, J., de Berker, A. O. & Tsao, D. Y. (2015) Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. The Journal of Neuroscience 35(6):2791–802.Google Scholar
Laird, A. R., Lancaster, J. L. & Fox, P. T. (2005) BrainMap: The social evolution of a human brain mapping database. Neuroinformatics 3(1):6578.CrossRefGoogle ScholarPubMed
Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. (2013) Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503(7474):7884.Google Scholar
Poldrack, R. A., Kittur, A., Kalar, D. & Miller, E. (2011) The cognitive atlas: Toward a knowledge foundation for cognitive neuroscience. Frontiers in Neuroinformatics 5:17.CrossRefGoogle Scholar
Price, C. J. (2010) The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences 1191:6288. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20392276.Google Scholar
Sakai, K. & Passingham, R. E. (2003) Prefrontal interactions reflect future task operations. Nature Neuroscience 6(1):7581.Google Scholar
Siegel, M., Buschman, T. J. & Miller, E. K. (2015) Cortical information flow during flexible sensorimotor decisions. Science 348(6241):1352–55. Available at: http://doi.org/10.1126/science.aab0551.Google Scholar
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. (2011) Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8(8):665–70.CrossRefGoogle ScholarPubMed