Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T04:42:10.498Z Has data issue: false hasContentIssue false

Expertise in symbol-referent mapping

Published online by Cambridge University Press:  27 August 2009

Roland H. Grabner
Affiliation:
Institute for Behavioral Sciences, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland. grabner@ifv.gess.ethz.chhttp://www.ifvll.ethz.ch/index_EN

Abstract

Much evidence cited by Cohen Kadosh & Walsh (CK&W) in support of their notation-specific representation hypothesis is based on tasks requiring automatic number processing. Several of these findings can be alternatively explained by differential expertise in mapping numerical symbols onto semantic magnitude representations. The importance of considering symbol-referent mapping expertise in theories on numerical representations is highlighted.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, D. (2008) Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience 9(4):278–91.CrossRefGoogle ScholarPubMed
Ansari, D., Garcia, N., Lucas, E., Hamon, K. & Dhital, B. (2005) Neural correlates of symbolic number processing in children and adults. NeuroReport 16(16):1769–73.CrossRefGoogle ScholarPubMed
Campbell, J. I. D. (1994) Architectures for numerical cognition. Cognition 53(1):144.CrossRefGoogle ScholarPubMed
Campbell, J. I. D. & Epp, L. J. (2004) An encoding-complex approach to numerical cognition in Chinese-English bilinguals. Canadian Journal of Experimental Psychology (Revue Canadienne De Psychologie Experimentale) 58(4):229–44.CrossRefGoogle ScholarPubMed
Cohen Kadosh, R., Henik, A. & Rubinsten, O. (2008e) Are Arabic and verbal numbers processed in different ways? Journal of Experimental Psychology: Learning, Memory and Cognition 34(6):1377–91.Google ScholarPubMed
Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. (2003) Three parietal circuits for number processing. Cognitive Neuropsychology 20(3–6):487506.CrossRefGoogle ScholarPubMed
Diester, I. & Nieder, A. (2007) Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS Biology 5 (11):e294; 2684–95.CrossRefGoogle ScholarPubMed
Fias, W. (2001) Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research – Psychologische Forschung 65(4):242–49.CrossRefGoogle ScholarPubMed
Fias, W., Brysbaert, M., Geypens, F. & d'Ydewalle, G. (1996) The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition 2(1):95110.CrossRefGoogle Scholar
Halberda, J., Mazzocco, M. M. M. & Feigenson, L. (2008) Individual differences in non-verbal number acuity correlate with math achievement. Nature 455(7213):665–68.CrossRefGoogle Scholar
Holloway, I. D. & Ansari, D. (2009) Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. Journal of Experimental Child Psychology 103(1):1729.CrossRefGoogle ScholarPubMed
Ito, Y. & Hatta, T. (2004) Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory and Cognition 32(4):662–73.CrossRefGoogle ScholarPubMed
Koechlin, E., Naccache, L., Block, E. & Dehaene, S. (1999) Primed numbers: Exploring the modularity of numerical representations with masked and unmasked semantic priming. Journal of Experimental Psychology: Human Perception and Performance 25(6):1882–905.Google Scholar
Peirce, C. S. (1955) Logic as semiotic: The theory of signs. In: The philosophical writings of Peirce, ed. Buchler, J. J., pp. 98119. Dover.Google Scholar
Rousselle, L. & Noël, M. P. (2007) Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic versus non-symbolic number magnitude processing. Cognition 102(3):361–95.CrossRefGoogle Scholar