No CrossRef data available.
Article contents
Bayesian computation and mechanism: Theoretical pluralism drives scientific emergence
Published online by Cambridge University Press: 25 August 2011
Abstract
The breadth-first search adopted by Bayesian researchers to map out the conceptual space and identify what the framework can do is beneficial for science and reflective of its collaborative and incremental nature. Theoretical pluralism among researchers facilitates refinement of models within various levels of analysis, which ultimately enables effective cross-talk between different levels of analysis.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
Anderson, J. R. (1991b) The adaptive nature of human categorization. Psychological Review
98:409–29.Google Scholar
Barrett, H. C. & Kurzban, R. (2006) Modularity in cognition: Framing the debate. Psychological Review
113:628–47.Google Scholar
Feldman, J. A. (2010) Cognitive science should be unified: Comment on Griffiths et al. and McClelland et al.
Trends in Cognitive Sciences
14:341.Google Scholar
Griffiths, T. L. & Kalish, M. L. (2007) Language evolution by iterated learning with Bayesian agents. Cognitive Science
31:441–80.Google Scholar
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences
14(8):357–64.Google Scholar
Kalish, M. L., Griffiths, T. L. & Lewandowsky, S. (2007) Iterated learning: Intergenerational knowledge transmission reveals inductive biases. Psychonomic Bulletin and Review
14:288–94.Google Scholar
Kalish, M. L., Lewandowsky, S. & Kruschke, J. K. (2004) Population of linear experts: Knowledge partitioning and function learning. Psychological Review
111:1072–99.CrossRefGoogle ScholarPubMed
Kruschke, J. K. (2006) Locally Bayesian learning with applications to retrospective revaluation and highlighting. Psychological Review
113:677–99.CrossRefGoogle ScholarPubMed
Kruschke, J. K. (2008) Bayesian approaches to associative learning: From passive to active learning. Learning and Behavior
36:210–26.Google Scholar
Kruschke, J. K. (2010) Bridging levels of analysis: Comment on McClelland et al. and Griffiths et al.
Trends in Cognitive Sciences
14:344–45.CrossRefGoogle ScholarPubMed
Kuhn, T. S. (1970) The structure of scientific revolutions, 2nd edition. University of Chicago Press.Google Scholar
Lewandowsky, S., Griffiths, T. L. & Kalish, M. L. (2009) The wisdom of individuals: Exploring people's knowledge about everyday events using iterated learning. Cognitive Science
33:969–98.CrossRefGoogle ScholarPubMed
Lewandowsky, S., Kalish, M. & Ngang, S. K. (2002) Simplified learning in complex situations: Knowledge partitioning in function learning. Journal of Experimental Psychology: General
131:163–93.Google Scholar
Lewandowsky, S., Roberts, L. & Yang, L.-X. (2006) Knowledge partitioning in categorization: Boundary conditions. Memory and Cognition
34:1676–88.CrossRefGoogle ScholarPubMed
Little, D. R. & Lewandowsky, S. (2009) Beyond nonutilization: Irrelevant cues can gate learning in probabilistic categorization. Journal of Experimental Psychology: Human Perception and Performance
35:530–50.Google Scholar
Marr, D. (1982/2010) Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman/MIT Press. (Original work published in 1982; 2010 reprint edition by MIT Press).Google Scholar
McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S. & Smith, L. B. (2010) Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences
14:348–56.Google Scholar
Navarro, D. J. (2010) Learning the context of a category. In: Advances in neural information processing systems, vol. 23, ed. Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. & Culotta, A., pp. 1795–803. MIT Press.Google Scholar
Nosofsky, R. M. (1986) Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General
115:39–57.CrossRefGoogle ScholarPubMed
Rumelhart, D. E. & McClelland, J. L. (1985) Levels indeed! A response to Broadbent. Journal of Experimental Psychology: General
114:193–97.CrossRefGoogle Scholar
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. (2010a) Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review
117:1144–67.CrossRefGoogle ScholarPubMed
Schall, J. D. (2004) On building a bridge between brain and behavior. Annual Review of Psychology
55:23–50.Google Scholar
Sewell, D. K. & Lewandowsky, S. (2011) Restructuring partitioned knowledge: The role of recoordination in category learning. Cognitive Psychology
62:81–122.CrossRefGoogle ScholarPubMed
Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. (2010) Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin and Review
17:443–64.CrossRefGoogle ScholarPubMed
Shiffrin, R. M., Lee, M. D., Kim, W. & Wagenmakers, E. J. (2008) A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science
32:1248–84.Google Scholar
Thomas, M. S. C. & McClelland, J. L. (2008) Connectionist models of cognition. In: The Cambridge handbook of computational psychology, ed. Sun, R., pp. 23–58. Cambridge University Press.Google Scholar
Yang, L.-X. & Lewandowsky, S. (2003) Context-gated knowledge partitioning in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition
29:663–79.Google Scholar
Yang, L.-X. & Lewandowsky, S. (2004) Knowledge partitioning in categorization: Constraints on exemplar models. Journal of Experimental Psychology: Learning, Memory, and Cognition
30:1045–64.Google Scholar
Target article
Bayesian computation and mechanism: Theoretical pluralism drives scientific emergence
Related commentaries (1)
Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition