Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Kriegeskorte, Nikolaus
and
Douglas, Pamela K.
2018.
Cognitive computational neuroscience.
Nature Neuroscience,
Vol. 21,
Issue. 9,
p.
1148.
AKINCI, T. Çetin
2019.
A vıew to cognItıve engıneerıng.
International Conference on Technics, Technologies and Education,
p.
29.
Jangid, Aisha
Chaudhary, Laxmi
and
Sharma, Komal
2021.
Intelligent Energy Management Technologies.
p.
159.
Hasson, Alexander
2022.
Artificial intelligence is limited by the simplification of biological processes.
Vol. 2425,
Issue. ,
p.
390006.
Wei, Hui
Jin, Xiao
and
Su, Zihao
2022.
A Circuit Model for Working Memory Based on Hybrid Positive and Negative-Derivative Feedback Mechanism.
Brain Sciences,
Vol. 12,
Issue. 5,
p.
547.
Gao, Tian
Deng, Bin
Wang, Jiang
and
Yi, Guosheng
2023.
Presynaptic spike-driven plasticity based on eligibility trace for on-chip learning system.
Frontiers in Neuroscience,
Vol. 17,
Issue. ,
Target article
Building machines that learn and think like people
Related commentaries (27)
Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning
Avoiding frostbite: It helps to learn from others
Back to the future: The return of cognitive functionalism
Benefits of embodiment
Building brains that communicate like machines
Building machines that adapt and compute like brains
Building machines that learn and think for themselves
Building on prior knowledge without building it in
Causal generative models are just a start
Children begin with the same start-up software, but their software updates are cultural
Crossmodal lifelong learning in hybrid neural embodied architectures
Deep-learning networks and the functional architecture of executive control
Digging deeper on “deep” learning: A computational ecology approach
Evidence from machines that learn and think like people
Human-like machines: Transparency and comprehensibility
Intelligent machines and human minds
Social-motor experience and perception-action learning bring efficiency to machines
The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction
The argument for single-purpose robots
The fork in the road
The humanness of artificial non-normative personalities
The importance of motivation and emotion for explaining human cognition
Theories or fragments?
Thinking like animals or thinking like colleagues?
Understand the cogs to understand cognition
What can the brain teach us about building artificial intelligence?
Will human-like machines make human-like mistakes?
Author response
Ingredients of intelligence: From classic debates to an engineering roadmap