Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:51:11.452Z Has data issue: false hasContentIssue false

Comorbidity in the context of neural network properties

Published online by Cambridge University Press:  29 June 2010

Juliana Yordanova
Affiliation:
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. jyord@bio.bas.bgkolev@bio.bas.bgru@bio.bas.bashttp://www.bio.bas.bg/neurobiology/
Vasil Kolev
Affiliation:
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. jyord@bio.bas.bgkolev@bio.bas.bgru@bio.bas.bashttp://www.bio.bas.bg/neurobiology/
Roumen Kirov
Affiliation:
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria. jyord@bio.bas.bgkolev@bio.bas.bgru@bio.bas.bashttp://www.bio.bas.bg/neurobiology/
Aribert Rothenberger
Affiliation:
Child and Adolescent Psychiatry, University of Göttingen, D-37075 Göttingen, Germany. arothen@gwdg.dehttp://www.user.gwdg.de/~ukyk/index.html

Abstract

Cramer et al.'s network approach reconceptualizes mental comorbidity on the basis of symptom space originating from psychometric signatures. We argue that the advantages of this approach need to be regarded in the context of the multi-level functional organization of the neural substrate, ranging from neurogenetic to psychometric. Neuroelectric oscillations are proposed as a level-integrating principle.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Başar, E., Başar-Eroglu, C., Karakaş, S. & Schürmann, M. (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology 39:241–48.CrossRefGoogle ScholarPubMed
Buzsáki, G. & Draguhn, A. (2004) Neuronal oscillations in cortical networks. Science 304:1926–29.CrossRefGoogle ScholarPubMed
Gray, C. M. & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, USA 86:1698–702.CrossRefGoogle ScholarPubMed
Herrmann, C. S. & Demiralp, T. (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology 116:2719–33.CrossRefGoogle ScholarPubMed
Kirov, R., Banaschewski, T., Uebel, H., Kinkelbur, J. & Rothenberger, A. (2007a) REM-sleep alterations in children with tic disorder and attention-deficit/hyperactivity disorder comorbidity: Impact of hypermotor symptoms. European Child and Adolescent Psychiatry 16(1):4550.CrossRefGoogle Scholar
Kirov, R., Kinkelbur, J., Banaschewski, T. & Rothenberger, A. (2007b) Sleep patterns in children with attention-deficit/hyperactivity disorder, tic disorder and comorbidity. Journal of Child Psychology and Psychiatry 48:561–70.CrossRefGoogle ScholarPubMed
Kirov, R., Weiss, C., Siebner, H. R., Born, J. & Marshall, L. (2009) Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proceedings of the National Academy of Sciences, USA 106:15460–65.CrossRefGoogle ScholarPubMed
Leckman, J. F. (2002) Tourette's syndrome. Lancet 360:1577–86.Google Scholar
Moll, G. H., Heinrich, H., Trott, G. E., Wirth, S., Bock, N. & Rothenberger, A. (2001) Children with comorbid attention-deficit–hyperactivity disorder and tic disorder: Evidence for additive inhibitory deficits within the motor system. Annals of Neurology 49:393–96.CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A. & Shulman, G. L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences, USA 98:676–82.CrossRefGoogle ScholarPubMed
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M. & Basar, E. (2001) Wavelet entropy: A new tool for analysis of short time brain electrical signals. Journal of Neuroscience Methods 105:6575.CrossRefGoogle ScholarPubMed
Rosso, O. A. & Masoller, C. (2009) Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 79:040106. (Online publication).CrossRefGoogle ScholarPubMed
Rothenberger, A. (2009) Brain oscillations forever: Neurophysiology in future research of child psychiatric problems. Journal of Child Psychology and Psychiatry 50:7986.CrossRefGoogle ScholarPubMed
Rothenberger, A., Banaschewski, T., Heinrich, H., Moll, G. H., Schmidt, M. H. & van't Klooster, B. (2000) Comorbidity in ADHD-children: Effects of coexisting conduct disorder or tic disorder on event-related brain potentials in an auditory selective-attention task. European Archives of Psychiatry and Clinical Neuroscience 250:101–10.CrossRefGoogle ScholarPubMed
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L. & von Stein, A. (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences, USA 95:7092–96.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J. S. & Castellanos, F. X. (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: A neurobiological hypothesis. Neuroscience and Biobehavioral Reviews 31:977–86.CrossRefGoogle ScholarPubMed
Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J. & Eichenbaum, H. (2009) Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, USA 106:20942–47.CrossRefGoogle ScholarPubMed
Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. (2001) The brainweb: Phase synchronization and large-scale integration. Nature Reviews: Neuroscience 2:229–39.CrossRefGoogle ScholarPubMed
von Stein, A. & Sarnthein, J. (2000) Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology 38:301–13.CrossRefGoogle Scholar
Yordanova, J., Banaschewski, T., Kolev, V., Woerner, W. & Rothenberger, A. (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder: Evidence from event-related gamma oscillations. Clinical Neurophysiology 112:1096–108.CrossRefGoogle ScholarPubMed
Yordanova, J., Dumais-Huber, C. & Rothenberger, A. (1996) Coexistence of tics and hyperactivity in children: No additive effect at the psychophysiological level. International Journal of Psychophysiology 21:121–33.CrossRefGoogle ScholarPubMed
Yordanova, J., Dumais-Huber, C., Rothenberger, A. & Woerner, W. (1997) Frontocortical activity in children with comorbidity of tic disorder and attention-deficit hyperactivity disorder. Biological Psychiatry 41:585–94.CrossRefGoogle ScholarPubMed
Yordanova, J., Heinrich, H., Kolev, V. & Rothenberger, A. (2006) Increased event-related theta activity as a psychophysiological marker of comorbidity in children with tics and attention-deficit/hyperactivity disorders. NeuroImage 32:940–55.CrossRefGoogle ScholarPubMed