Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T08:29:05.221Z Has data issue: false hasContentIssue false

Enough blanket metaphysics, time for data-driven heuristics

Published online by Cambridge University Press:  29 September 2022

Wiktor Rorot
Affiliation:
Faculty of Philosophy, University of Warsaw, 00-927 Warszawa, Poland w.rorot@uw.edu.pl https://wiktor.rorot.pl Faculty of Psychology, University of Warsaw, 00-183 Warszawa, Poland piotr.litwin@psych.uw.edu.pl
Tomasz Korbak
Affiliation:
Department of Informatics, University of Sussex, Brighton BN1 9RH, UK tomasz.korbak@gmail.com https://tomekkorbak.com
Piotr Litwin
Affiliation:
Faculty of Psychology, University of Warsaw, 00-183 Warszawa, Poland piotr.litwin@psych.uw.edu.pl
Marcin Miłkowski
Affiliation:
Institute of Philosophy and Sociology, Polish Academy of Sciences, 00-330 Warszawa, Poland mmilkows@ifispan.edu.pl http://marcinmilkowski.pl/

Abstract

Bruineberg and colleagues criticisms' have been received but downplayed in the free energy principle (FEP) literature. We strengthen their points, arguing that Friston blanket discovery, even if tractable, requires a full formal description of the system of interest at the outset. Hence, blanket metaphysics is futile, and we postulate that researchers should turn back to heuristic uses of Pearl blankets.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003). HITON: a novel Markov blanket algorithm for optimal variable selection. AMIA 2003 Annual Symposium Proceedings. AMIA Symposium, 2003, 21–25.Google Scholar
Bai, X., Glymour, C., Padman, R., Ramsey, J., Spirtes, P. L., & Wimberly, F. C. (2004). PCX: Markov blanket classification for large data sets with few cases. Center for Automated Learning and Discovery. Retrieved from http://reports-archive.adm.cs.cmu.edu/anon/cald/CMU-CALD-04-102.pdfGoogle Scholar
Da Costa, L., Friston, K., Heins, C., & Pavliotis, G. A. (2021). Bayesian mechanics for stationary processes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2256), 20210518. https://doi.org/10.1098/rspa.2021.0518CrossRefGoogle ScholarPubMed
Friston, K., Heins, C., Ueltzhöffer, K., Da Costa, L., & Parr, T. (2021a). Stochastic chaos and Markov blankets. Entropy, 23(9), 1220. https://doi.org/10.3390/e23091220CrossRefGoogle Scholar
Friston, K. J. (2019). A free energy principle for a particular physics. arXiv:1906.10184 [q-bio]. http://arxiv.org/abs/1906.10184Google Scholar
Friston, K. J., Fagerholm, E. D., Zarghami, T. S., Parr, T., Hipólito, I., Magrou, L., & Razi, A. (2021b). Parcels and particles: Markov blankets in the brain. Network Neuroscience, 5(1), 211251. https://doi.org/10.1162/netn_a_00175CrossRefGoogle Scholar
Friston, K. J., Wiese, W., & Hobson, J. A. (2020). Sentience and the origins of consciousness: From Cartesian duality to Markovian monism. Entropy, 22(5), 516. https://doi.org/10.3390/e22050516CrossRefGoogle ScholarPubMed
Pellet, J.-P., & Elisseeff, A. (2008). Using Markov blankets for causal structure learning. Journal of Machine Learning Research, 9(43), 12951342.Google Scholar
Peña, J. M., Nilsson, R., Björkegren, J., & Tegnér, J. (2007). Towards scalable and data efficient learning of Markov boundaries. Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005), 45(2), 211–232. Retrieved from https://doi.org/10.1016/j.ijar.2006.06.008CrossRefGoogle Scholar
Smaldino, P. E. (2017). Models are stupid, and we need more of them. In Vallacher, R. R., Read, S. J., & Nowak, A. (Eds.), Computational social psychology (pp. 311331). Routledge. https://doi.org/10.4324/9781315173726-14CrossRefGoogle Scholar
Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003). Time and sample efficient discovery of Markov blankets and direct causal relations. Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 673–678. https://doi.org/10.1145/956750.956838CrossRefGoogle Scholar
Wiese, W., & Friston, K. J. (2021). Examining the continuity between life and mind: Is there a continuity between autopoietic intentionality and representationality? Philosophies, 6(1), 18. https://doi.org/10.3390/philosophies6010018CrossRefGoogle Scholar
Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press.CrossRefGoogle Scholar