No CrossRef data available.
Article contents
Redressing the emperor in causal clothing
Published online by Cambridge University Press: 29 September 2022
Abstract
Over-flexibility in the definition of Friston blankets obscures a key distinction between observational and interventional inference. The latter requires cognizers form not just a causal representation of the world but also of their own boundary and relationship with it, in order to diagnose the consequences of their actions. We suggest this locates the blanket in the eye of the beholder.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press
References
Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of interoception and categorization. Social Cognitive and Affective Neuroscience, 12(1), 1–23. https://doi.org/10.1093/scan/nsw154CrossRefGoogle ScholarPubMed
Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006). Causal reasoning in rats. Science (New York, N.Y.), 311(5763), 1020–1022. https://doi.org/10.1126/science.1121872CrossRefGoogle ScholarPubMed
Bramley, N. R., Dayan, P., Griffiths, T. L., & Lagnado, D. A. (2017). Formalizing Neurath's ship: Approximate algorithms for online causal learning. Psychological Review, 124(3), 301–338. https://doi.org/10.1037/rev0000061CrossRefGoogle ScholarPubMed
Bramley, N. R., Gerstenberg, T., Mayrhofer, R., & Lagnado, D. A. (2019). Intervening in time. In Kleinberg, S. (Ed.), Time and Causality across the Sciences (pp. 86–115). Cambridge University Press. https://doi.org/10.1017/9781108592703.006Google Scholar
Bramley, N. R., Lagnado, D. A., & Speekenbrink, M. (2015). Conservative forgetful scholars: How people learn causal structure through sequences of interventions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 708–731.Google ScholarPubMed
Bramley, N. R., Gerstenberg, T., Mayrhofer, R., & Lagnado, D. A. (2018). Time in causal structure learning. Journal of Experimental Psychology: Learning Memory and Cognition, 44(12), 1880–1910. https://doi.org/10.1037/xlm0000548Google ScholarPubMed
Buckley, C. L., Kim, C. S., McGregor, S., & Seth, A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81, 55–79. https://doi.org/10.1016/j.jmp.2017.09.004CrossRefGoogle Scholar
Clayton, N., & Dickinson, A. (2006). Rational rats. Nature Neuroscience, 9(4), 472–474. https://doi.org/10.1038/nn0406-472CrossRefGoogle ScholarPubMed
Friston, K., Daunizeau, J., & Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE, 4(7), e6421. https://doi.org/10.1371/journal.pone.0006421CrossRefGoogle ScholarPubMed
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O'Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience and Biobehavioral Reviews, 68, 862–879. https://doi.org/10.1016/j.neubiorev.2016.06.022CrossRefGoogle Scholar
Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104(1–2), 137–160. https://doi.org/10.1007/s00422-011-0424-zCrossRefGoogle ScholarPubMed
Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 6(4), 187–224. https://doi.org/10.1080/17588928.2015.1020053CrossRefGoogle ScholarPubMed
Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 334–384. https://doi.org/10.1016/j.cogpsych.2005.05.004CrossRefGoogle ScholarPubMed
Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induction. Psychological Review, 116(4), 661–716. https://doi.org/10.1037/a0017201CrossRefGoogle ScholarPubMed
Hagmayer, Y., Sloman, S. A., Lagnado, D. A., & Waldmann, M. R. (2007). Causal reasoning through intervention. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 86–100). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195176803.003.0007CrossRefGoogle Scholar
Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of the Royal Society Interface, 15(138), 20170792. https://doi.org/10.1098/rsif.2017.0792CrossRefGoogle ScholarPubMed
Lagnado, D. A., & Sloman, S. A. (2004). The advantage of timely intervention. Journal of Experimental Psychology: Learning Memory and Cognition, 30(4), 856–876. https://doi.org/10.1037/0278-7393.30.4.856Google ScholarPubMed
Lagnado, D. A., & Sloman, S. A. (2006). Time as a guide to cause. Journal of Experimental Psychology: Learning Memory and Cognition, 32(3), 451–460. https://doi.org/10.1037/0278-7393.32.3.451Google ScholarPubMed
Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation: Cues to causal structure. In Gopnik, A. & Schulz, L. (Eds.), Causal learning: Psychology, philosophy, and computation (Vol. 44, pp. 154–172). https://doi.org/10.1093/acprof:oso/9780195176803.003.0011CrossRefGoogle Scholar
Palacios, E., Isomura, T., Parr, T., & Friston, K. (2019). The emergence of synchrony in networks of mutually inferring neurons. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-42821-7CrossRefGoogle ScholarPubMed
Parr, T. (2020). Choosing a Markov blanket. Behavioral and Brain Sciences, 43, E112. http://dx.doi.org/10.1017/S0140525X19002632CrossRefGoogle ScholarPubMed
Parr, T., & Friston, K. J. (2018). Active inference and the anatomy of oculomotion. Neuropsychologia, 111(October 2017), 334–343. https://doi.org/10.1016/j.neuropsychologia.2018.01.041CrossRefGoogle ScholarPubMed
Pearl, J. (2009). Models, reasoning, and inference (2nd ed.). Cambridge University Press.CrossRefGoogle Scholar
Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 17–35. https://doi.org/10.1016/j.pneurobio.2015.09.001CrossRefGoogle ScholarPubMed
Ramstead, M. J. D., Kirchhoff, M. D., Constant, A., & Friston, K. J. (2021). Multiscale integration: Beyond internalism and externalism. Synthese, 198, 41–70. doi: https://doi.org/10.1007/s11229-019-02115-xCrossRefGoogle ScholarPubMed
Ramstead, M. J. D., Kirchhoff, M., & Friston, K. (2020). A tale of two densities: Active inference is enactive inference. Adaptive Behavior, 28(4), 225–239. https://doi.org/10.1177/1059712319862774CrossRefGoogle ScholarPubMed
Rothe, A., Deverett, B., Mayrhofer, R., & Kemp, C. (2018). Successful structure learning from observational data. Cognition, 179(March 2017), 266–297. https://doi.org/10.1016/j.cognition.2018.06.003CrossRefGoogle ScholarPubMed
Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), 20160007. https://doi.org/10.1098/rstb.2016.0007CrossRefGoogle ScholarPubMed
Sloman, A. (2013). What else can brains do? Behavioral and Brain Sciences, 36(3), 230–231. https://doi.org/10.1017/S0140525X12002439CrossRefGoogle Scholar
Sloman, S. A. & Lagnado, D. A. (2005). Do we “do”? Cognitive Science, 29, 5–39.CrossRefGoogle Scholar
Sloman, S. A., & Lagnado, D. A. (2015). Causality in thought. Annual Review of Psychology, 66(1), 223–247. https://doi.org/10.1146/annurev-psych-010814-015135CrossRefGoogle ScholarPubMed
Steyvers, M., Tenenbaum, J. B., Wagenmakers, E. J., & Blum, B. (2003). Inferring causal networks from observations and interventions. Cognitive Science, 27(3), 453–489. doi: https://doi.org/10.1016/S0364-0213(03)00010-7CrossRefGoogle Scholar
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318. https://doi.org/10.1016/j.tics.2006.05.009CrossRefGoogle ScholarPubMed
Veissière, S. P. L., Constant, A., Ramstead, M. J. D., Friston, K., & Kirmayer, L. J. (2019). Thinking through other minds: A variational approach to cognition and culture. Behavioral and Brain Sciences, 43, e90: 1–75. doi: https://doi.org/10.1017/S0140525X19001213Google ScholarPubMed
Target article
The Emperor's New Markov Blankets
Related commentaries (35)
A continuity of Markov blanket interpretations under the free-energy principle
Against free energy, for direct perception
Bayesian realism and structural representation
Blankets, heat, and why free energy has not illuminated the workings of the brain
Boundaries and borders gone! But life goes on
Causal surgery under a Markov blanket
Does the metaphysical dog wag its formal tail? The free-energy principle and philosophical debates about life, mind, and matter
Embracing sensorimotor history: Time-synchronous and time-unrolled Markov blankets in the free-energy principle
Enough blanket metaphysics, time for data-driven heuristics
Free-energy pragmatics: Markov blankets don't prescribe objective ontology, and that's okay
Good theoretical debate, but insufficient proof of concept
Life, mind, agency: Why Markov blankets fail the test of evolution
Making life and mind as clear as possible, but not clearer
Making reification concrete: A response to Bruineberg et al.
Maps and territories, smoke, and mirrors
Markov blankets and Bayesian territories
Markov blankets and the preformationist assumption
Markov blankets as boundary conditions: Sweeping dirt under the rug still cleans the house
Markov blankets do not demarcate the boundaries of the mind
Markov blankets: Realism and our ontological commitments
Nothing but a useful tool? (F)utility and the free-energy principle
Practical implications from distinguishing between Pearl blankets and Friston blankets
Recurrent, nonequilibrium systems and the Markov blanket assumption
Redressing the emperor in causal clothing
Return of the math: Markov blankets, dynamical systems theory, and the bounds of mind
Scientific realism about Friston blankets without literalism
Spatiotemporal constraints of causality: Blanket closure emerges from localized interactions between temporally separable subsystems
The emperor has no blanket!
The empire strikes back: Some responses to Bruineberg and colleagues
The map, the territory, and the cartographer: Linking the “pure” formal models to the “murky” material world
The seductive allure of cargo cult computationalism
There is no “inference within a model”
What realism about agents requires
What's special about space?
Who tailors the blanket?
Author response
The Emperor Is Naked: Replies to commentaries on the target article